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It’s getting hot in here. . .
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So take off. . . and migrate

History suggests that human migration is a ubiquitous response to environmental change

• 100k years ago out of Africa due to glacial changes (Timmermann & Friedrich, 2017)

• 400 years ago through Europe due to the Little Ice Age (Waldinger, 2022)

• Almost 100 years ago in the United States due to the Dust Bowl (Hornbeck, 2012)

The Intergovernmental Panel on Climate Change (IPCC) has documented that an average of

21.5 million people have been displaced due to weather-related events annually since 2008

• The vast majority of recent climate migration to date has been domestic (IPCC, 2022)
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Mexico is a large country with wide variation in local climates
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The rate of warming varies strongly throughout Mexico
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This paper

Questions:

1. How effectively will migration limit the damages of future changes to the climate?

• How large are the costs associated with migration as adaptation to climate change?

2. How sensitive are the reduced climate damages from migration to relaxing the

assumption that everyone fully understands the climate system?

• Naivety ⇒ lower rates of climate-induced migration

3. How can policy be designed to help close the resulting “adaptation gap?”
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Empirical approach

I combine a dynamic lifecycle model of domestic migration with a non-stationary and

spatially heterogeneous model of the climate

• Estimation uses a rich panel of life histories from the Mexican Migration Project

• I estimate masses of the fully-rational and the naive surrounding the climate system

Counterfactual simulations use the estimated model and full-count census data to:

• Calculate welfare under different climate scenarios, with & without the ability to migrate

• Compare welfare across different policy options

6



The structure allows for rich counterfactuals

I combine the estimated model with full-count Census data to simulate individual decisions,

across the remainder of their lifetime, for the entire male population of Mexico

I identify the value of migration in reducing damages from climate change:

• Comparisons of decisions and welfare under business-as-usual warming (climate change

with current policies, BAU) to a limited warming scenario (same as 1950-1979)

• With and without the ability to move

• For both the fully-informed and the climate-naive

• While explicitly accounting for the costs associated with migration

I compare potential policy options by studying moving subsidies that:

• Must be taken in a given period (static)

• Can be taken once at the time of an individual’s choosing (dynamic)
7
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Dynamics are needed to study migration and climate change

• Migration is a decision with dynamic consequences

• Past work has highlighted large costs associated with migration

• Weather shocks ̸= Climate change

• Panel models relating weather to migration identify the effect of an unexpected shock

• Dynamic forms of adaptation are based on longer run expectations

• Allowing for forward-looking expectations of future climate is important

• Assuming that everyone does not understand the climate system would lead to

underestimates of migration rates and overestimates of expected climate damages
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Accounting for adaptation is important when calculating climate damages

Accounting for the costs of adaptation is important

• A move to an arbitrary location at an arbitrary time generates welfare costs of $100k

• Being forced to move in response to a disaster could be very costly!

Domestic migration is an important tool for limiting climate damages

• New workers today: E[lifetime climate damages] are 28% lower because of migration

• 17–19-year-olds in 2020

• Children born today: E[lifetime climate damages] are 33% lower because of migration

• 0–2-year-olds in 2020
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Correct information is valuable when dynamically adapting to climate change

The climate-naive stand to face 2% more damages (∼ $1, 100) from climate change

• Naivety ⇒ a reduced migration propensity rather than mistakes during a move (3x)

• This reduced propensity is 2.5x more costly than mistakes made during a move

Migration subsidies can serve as a nudge to the climate naive

• Dynamically-available subsidies reduce the gap b/w the belief types by 19%

• Statically-available subsidies reduce the gap b/w the belief types by 8%

Static policies induce dynamically suboptimal moves

• The dynamic value added is present in many common policies: provisions of the IRA and

first-time homeowners tax credits are examples
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Literature

• What are the damages of climate change?

• Reduced form: Schlenker & Roberts (2009), Burke et al. (2015), Carleton et al. (2022)

• Spatial: Rudik et al. (2022), Bilal & Rossi-Hansburg (2023), Cruz & Rossi-Hansburg (2023)

• What are the origins of the observed “adaptation gap?”

• Carleton & Hsiang (2016), Zappalà (2024)

• What are the welfare effects of migration?

• Reduced form: Deryugina et al. (2018), Nakamura et al. (2022), Sarvimäki et al. (2022)

• Structural: Kennan & Walker (2011), Oswald (2019), Ransom (2022)

• I (will) provide code and assistance to implement my algorithm
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Data & Empirical Motivation



I use rich microdata

Data Source Purpose Years

Mexican Migration Project (MMP) Estimation (11,194 Life-histories) 1950–2019

ENIGH, ENE surveys Estimation (Income) 1984–2019

Linveh et al. (2015) Estimation (Weather) 1930–1979

Daymet Estimation (Weather) 1980–2019

NASA NEX-GDDP CMIP6 Estimation/Simulations (Weather) 2020–2100

Mexican full-count Census Simulations 2020

MMP & Census Summary Statistics

12



There is a nonlinear relationship between migration and daily temperature

Conditional on expected wages, age, person, and state-year fixed effects
13



The structural model builds on important patterns in the data

• Shocks to mean temperature and extreme daily temperatures, across geography and

personal experience, correlate with migration decisions Table

• Extreme temperature shocks correlate with migration decisions when living both in and out

of one’s birth location Table

• This relationship persists even when comparing the average number of degree days an

individual faces in a given location in the years they migrate to the years they do not Table

• Individuals seem to be forward looking over temperature when deciding to migrate Table

• Individuals consider the weather of their destination when choosing whether and where

to move Static Logit Table
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Model



Migration is modeled as a decision with dynamic consequences

• Individuals are modeled to make the decision of where to live in Mexico

• This decision is made every three years

• The first decision is made at 17 years old

• Retirement occurs at 62 years old

• I allow for four unobserved types of individuals

• Those who are willing to move and those who are not

• Fully-informed or naive in their expectations of the climate system

t t + 1

Observe weather, demographic,

& preference shocks

Form heterogeneous

expectations of future weather

Decide where

to live (ℓ′)

Pay moving cost

(if needed)

Extreme rain events

are realized (r)

Collect three years

of discounted utility

15



Individuals choose from a set of 27 locations in Mexico

The choice set is composed of:

• 14 Köppen climate zones

• INEGI modified to account for

local idiosyncrasies (Garćıa, 2004)

• Urban-Rural Classification

• INEGI Metro zones

16



Individuals receive flow utility from living in a location

ū(ℓ′, ω, r ; θ) = θ1inc(ℓ
′, ω, r)

+ θ2DD26(ℓ′, ω) + θ3DD26(ℓ′, ω)2 + θ4DD14(ℓ′, ω) + θ5DD14(ℓ′, ω)2

+ θ61{ℓ′ = νℓ}+ θ71{ℓ′ ∈ U}

• Expected income, inc, is a function of individual and location-specific characteristics

• DD26: Annual degree days above 26◦C
(∑365

d=1 1{tempd ≥ 26}(tempd − 26)
)

• DD14: Annual degree days below 14◦C
(∑365

d=1 1{tempd ≤ 14}(14− tempd)
)

• 1{ℓ′ = νℓ}: Is ℓ′ their location of birth?

• 1{ℓ′ ∈ U}: Is ℓ′ an urban location?
17



Wages are a flexible function of individual and environmental variables

inc(ℓ′, ω, r) =
∑
a

∑
e

βa,e + βagag(ω)

+
3∑

c=1

[
βGDD,C
c GDD(ω) + βGDD2,C

c GDD(ω)2 + βD,C
c D(r) + βI ,C

c I (r)
]

+
1∑

ag=0

[
βGDD,Ag
ag GDD(ω) + βGDD2,Ag

ag GDD(ω)2 + βD,Ag
ag D(r) + βI ,Ag

ag I (r)
]

+ ξℓ′ + ηy (ω)

• GDD: Máız growing degree days
(∑365

d=1 1{8 ≤ tempd ≤ 32}(tempd − 8) + 1{tempd > 32}24
)

• D: Drought realization

• I : Flood realization

Wage Equation Estimates
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If individuals move, they have to pay an upfront cost

c̄(ℓ, ℓ′, ω; θ, τ) = γ1(τ) + γ2d(ℓ, ℓ
′) + γ31{kω ≥ 1}+ γ4ageω

• γ1(τ): γ1(mover) ∈ R, γ1(stayer) ≈ ∞

• d(ℓ, ℓ′): Distance between the largest city in ℓ and ℓ′

• kω: Individual’s number of children

• ageω: How old is the individual?
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The problem can be written as a finite-horizon Bellman

At time t < T , individual i , of unobserved type τ , living in ℓ with state ω chooses between

locations k ∈ {1, · · · ,K}, after forming expectations for extreme rain (R), faces a Bellman:

Vt(ℓ, ω; θ, τ) = max
k

{ER [u(ℓ, k , ω, r ; θ, τ)] + εtk︸ ︷︷ ︸
Expected flow utility
from moving to k

+δ3EΩ,ε|τ [Vt+1(k, ω
′; θ, τ)|ω]︸ ︷︷ ︸

Expected continuation
value from choice k

},

At time T , this individual’s value function is instead:

VT (ℓ, ω; θ, τ) = max
k

{ER [u(ℓ, k, ω, r ; θ, τ)] + εtk +
δ3

1− δ
ER,Ω|τ [u(k, k , ω

′, r ′; θ, τ)|ω]︸ ︷︷ ︸
Value of retiring in location k

},

εi ,t ∼ Type-1 Extreme Value
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Köppen climates are nested in space

(a) Level-One Köppen Climate Zones (b) Level-Two Köppen Climate Zones

21



Köppen climates are nested in space

(c) Level-One Köppen Climate Zones (d) Level-Two Köppen Climate Zones
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The climate is a high-dimensional system

The climate affects economic outcomes nonlinearly, but the curse of dimensionality is real. . .

I modify the techniques used by moment-based approximate equilibrium concepts to reduce

the dimensionality problem arising from strategic interactions to instead combat the same

problem arising from the high-dimensional nature of the climate system.

• Ifrach and Weintraub (2016); Gowrisankaran, Langer, and Zhang (2024)

I exploit the nested structure of the Köppen climate system to reduce the number of

locations whose weather I need to track down from 27 to 3

I use a set of first-stage estimates to reduce the number of weather variables I need to track,

per-location, from 5 to 2

This allows me to use information from 135 distinct weather variables in the dynamic model

22



The climate is a high-dimensional system

The climate affects economic outcomes nonlinearly, but the curse of dimensionality is real. . .

I modify the techniques used by moment-based approximate equilibrium concepts to reduce

the dimensionality problem arising from strategic interactions to instead combat the same

problem arising from the high-dimensional nature of the climate system.

• Ifrach and Weintraub (2016); Gowrisankaran, Langer, and Zhang (2024)
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• Ifrach and Weintraub (2016); Gowrisankaran, Langer, and Zhang (2024)

I exploit the nested structure of the Köppen climate system to reduce the number of

locations whose weather I need to track down from 27 to 3

I use a set of first-stage estimates to reduce the number of weather variables I need to track,

per-location, from 5 to 2

This allows me to use information from 135 distinct weather variables in the dynamic model
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I exploit the nested structure of the Köppen climate system to reduce the number of

locations whose weather I need to track down from 27 to 3

I use a set of first-stage estimates to reduce the number of weather variables I need to track,

per-location, from 5 to 2

This allows me to use information from 135 distinct weather variables in the dynamic model

22



A summary of the climate model

N (µy ,Σy )

Dry

Temperature

{DD26ℓ}ℓ∈Dry {DD14ℓ}ℓ∈Dry {GDDℓ}ℓ∈Dry •

{Drought Riskℓ}ℓ∈Dry {Flood Riskℓ}ℓ∈Dry

Precipitation

Temperate

Temperature Precipitation

Warm

Temperature Precipitation
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The climate varies spatially and temporally

The climate evolves according to:(
temp

prec

)
∼ N (µy ,Σy ),

Where:

µy
w = αy

w + αy
w1µ

y−1
w + αy

w2y ,

And fully-informed individuals, in year y , use

the last 30 years of weather to obtain α̂y & Σ̂y
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A model of heterogeneous climate expectations in Mexico

Fully-informed individuals use the average daily temperature to calculate the expected

number of each measure of degree days in each location:

DDℓ = 1{λD
ℓ + λD

1ℓtempC(ℓ) > 0} ×
[
λD
ℓ + λD

1ℓtempC(ℓ)

]
, (1)

They use realized agricultural-season precipitation (P) to calculate drought and flood risk:

prob(Rℓ) = Φ
(
ηRℓ + ηR1 PC(ℓ) + ηR2 tempC(ℓ)

)
, (2)

Individuals who form naive climate expectations are only assumed to observe the current

years’ weather and to assume that all future years will be the same

Climate Model Fit
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Estimation & Identification



Identification of model primitives

Flow utility parameters: Identification comes from variation in the input of interest and i)

where individuals choose to live across their menu of choices and ii) how they long they

decide to live there

Moving cost parameters: Identification comes from comparisons of migration rates across

variation in the input of interest

Mass of movers: Identification comes from comparisons of the first-time migration rate to

the migration rate of individuals on their second and later moves

Mass of believers: Identification comes from information on where individuals choose to live

coupled with variation in rates of warming across space and time
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I estimate the primitives using a full solution maximum likelihood routine

Initial Step: Estimate distribution of state variable transitions, the wage equation, and the

climate mappings

Inner Loop: Solve the Bellman using backward recursion across t to form model-induced

choice probabilities

Outer Loop: Maximize log likelihood
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The likelihood is a finite mixture

The log-likelihood is given by:

Λ(θ, π) =
∑
i

log (Eτ [Li (θ; τ)])

=
∑
i

log

(∑
τ

πτ · Li (θ; τ)

)
,

Where:

Li (θ; τ) =

Ti∏
t=1

Lit(θ; τ) =

Ti∏
t=1

exp(V t(ℓit , ℓit+1, ω; θ, τ))∑
j∈C exp(V t(ℓit , j , ω; θ, τ))

,

And, πτ is the probability of being of type τ
(∑4

τ=1 πτ = 1
)

Alternative-Specific Value Function
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Results



Parameter estimates

Description Parameter Coefficient Std. Error

Flow utility

Income, measured in 2010 hourly pesos θ1 0.006 (0.0007)

Degree days above 26◦C θ2 0.034 (0.005)

Degree days above 26◦C squared θ3 -0.015 (0.002)

Degree days below 14◦C θ4 0.020 (0.002)

Degree days below 14◦C squared θ5 -0.003 (0.0003)

Living in location of birth θ6 0.183 (0.002)

Living in an urban location θ7 -0.041 (0.003)

Moving costs

Fixed migration cost, for movers γ1 2.599 (0.073)

Distance of move γ2 0.140 (0.011)

Cost shifter: parenthood γ3 0.072 (0.022)

Cost shifter: age γ4 0.172 (0.006)

Unobserved heterogeneity

Mass of movers πm 0.628 (0.013)

Mass of fully-informed expectations πb 0.673 (0.206)

Notes: Distance is measured in log kilometers. The likelihood contains 90,578

individual-year observations from 11,194 individuals. Asymptotic standard errors

are calculated using the score of the likelihood.
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Understanding magnitudes

• Individuals are indifferent between living in their location of birth and living away from

this location with about twice the average annual income

• Negative preference for living in an urban location

• Evidence of a compensating differential for living in urban centers (Rosen, 1986)

• Estimated average moving costs are very large (∼ $99k)
• This is the average cost of a forced move in an arbitrary period to an arbitrary location

• Kennan & Walker (2011) style calculations show that actual costs paid are on average

negative (∼ $-50k) and positive for moves back home ($29k)
• Migration is an endogenous choice!
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Understanding magnitudes

I estimate a bliss-point of 113 degree days above 26◦C

• Historically, 16% of the population experienced heat beyond this level

• In 2050, 49% of the population would experience heat beyond this level, w/o migration

I estimate a bliss-point of 333 degree days below 14◦C

• Historically, 9% of the population experienced cold beyond this level

• In 2050, 0.02% of the population would experience cold beyond this level, w/o migration
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The model fits the data well across levels of education

32



The model fits the data well across sectors of employment

Table of moments
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Simulations



I use the model to simulate choices under different environments

• I use the 2020 Mexican Census to obtain:

• Number of individuals, by age, living in each municipality

• Percent of individuals, by municipality, employed in agriculture

• Distribution of education by municipality

• Simulate different climate scenarios with and without the ability to move

• Use daily data from CMIP6 SSP2 4.5 scenario to simulate business-as-usual climate

• Use historical data to simulate limited warming as a counterfactual scenario of the climate

system centered around 1950-1979 averages

• Simulate the decisions of individuals under the different scenarios

• Bring new young men into the model based on census counts for children

• Retire people at 62 years old
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What is the lifetime value of migration?

The lifetime value of the ability to migrate, at year y , can be calculated as the average

difference in welfare across counterfactual simulations, with and without the ability to

migrate, amongst those who are 17–19-years-old in y . Mathematically,

1

n(y)

∑
i(y)

{
Ṽ (ℓi , ωi |s)− Ṽ (ℓi , ωi |s, γ1 = ∞)

}
.

• Ṽ (·): Value function, scaled to 2024 dollars

• γ1: Fixed moving cost

• i indexes individuals making their first migration decision in year y (|i | = ny )

Translation from utils to dollars Accounting for congestion effects on wages Heterogeneity in the value of migration

Migration rates across time and heterogeneous beliefs Recursive derivation of naive value function
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Migration becomes more valuable over time with warming
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How effectively will migration limit climate damages?

Average expected lifetime climate damages can be calculated as the average difference in

welfare across counterfactual simulations with and without climate change. Mathematically,

1

n(y)

∑
i(y)

{
Ṽ (ℓi , ωi |no cc)− Ṽ (ℓi , ωi |BAU)

}
.
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Migration reduces expected climate damages
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Migration is progressive adaptation to regressive climate damages

% ↓ in Damages from Migration

Age in 2020: 17–19-years-old <2-years-old

Average 28% 33%

Climate Figure

Dry 27% 27%

Temperate 3% 1%

Warm 35% 40%

Agricultural Worker Figure

Yes 32% 37%

No 28% 32%

Years of Education Figure

0–5 32% 36%

6–11 30% 34%

12+ 28% 32%

Notes: These are the average results of 100 simulations of the model.

Damages are measured in lifetime values. Climate damages are in 2024

dollars, and represent the average difference in lifetime welfare for a

17-year-old in 2020. The percentage decrease in damages from migration

is the average difference in climate damages from a world without migration

to one with migration.
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Incomplete information on the climate system makes migration less valuable

% ↓ in Climate Damages from Info

Age in 2020: 17–19-years-old <2-years-old

Average 2.2% 1.2%

Climate

Dry 0.4% 0.6%

Temperate 1.3% 2.2%

Warm 3.2% 1.2%

Agricultural Worker

Yes 2.9% 1.0%

No 2.1% 1.3%

Years of Education

0–5 2.7% 1.1%

6–11 2.5% 1.2%

12+ 2.1% 1.3%

Notes: These are the average results of 100 simulations of the model.

Values are for 17-19 year olds, measured in 2024 dollars. The percent

decrease in climate damages represents that for the climate-naive individuals

from becoming fully-informed.
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Common policy tools can reduce the size of this internality

Value of Climate Information in 2020

Dollar % ↓ from $1,100 % ↓ from $1,100

Value Dynamic Subsidy Static Subsidy

Average 1,099 18.7% 7.8%

Climate

Dry 544 29.7% 12.8%

Temperate 298 49.0% 21.4%

Warm 4,300 10.4% 4.1%

Agricultural Worker

Yes 2,019 13.7% 5.3%

No 976 20.2% 8.6%

Years of Education

0–5 1,700 13.7% 6.0%

6–11 1,313 18.8% 7.0%

12+ 987 19.2% 8.5%

Notes: These are the average results of 100 simulations of the model.

The value of climate information refers to the difference in average lifetime

welfare between the population of fully-informed and climate-naive

individuals, in 2020. The decrease in the value of climate information from a

dynamic and static subsidy refers to the decrease of the dollar value of climate

information from a one-time $1,100 subsidy to be used at the first time an

individual moves and a take-it-or-leave-it offer, both in 2020.
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Intuition for the differences between dynamic and static policies

m Random Shock

Mass of

Movers

Notes: m is the cutoff for inframarginal movers, s is the size of the subsidy, w is the size of the option value

for future moving opportunities with a subsidy of s.
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Intuition for the differences between dynamic and static policies

m

$s

Random Shock

Mass of

Movers

Notes: m is the cutoff for inframarginal movers, s is the size of the subsidy, w is the size of the option value

for future moving opportunities with a subsidy of s.
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Intuition for the differences between dynamic and static policies

m m′

$0

Random Shock

Mass of

Movers

Notes: m is the cutoff for inframarginal movers, s is the size of the subsidy, w is the size of the option value

for future moving opportunities with a subsidy of s.
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Intuition for the differences between dynamic and static policies

m

$w

m′

$0

Random Shock

Mass of

Movers

Notes: m is the cutoff for inframarginal movers, s is the size of the subsidy, w is the size of the option value

for future moving opportunities with a subsidy of s.
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Intuition for the differences between dynamic and static policies

m

$w

m′

$0

$s

Random Shock

Mass of

Movers

Notes: m is the cutoff for inframarginal movers, s is the size of the subsidy, w is the size of the option value

for future moving opportunities with a subsidy of s.
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Conclusion



Summary of findings

• The spatial heterogeneity in climate damages makes migration a highly valuable

mechanism of adaptation, even within national borders

• Accounting for adaptation when estimating climate damages is important (↓ 28%)

• Accounting for the costs of adaptation when estimating climate damages is important

• Damages could be even lower if the population understood the climate system (↓ 2%)

• Policy can play a role in helping individuals adapt to climate change

• Migration subsidies nudge the climate-naive into behaving more similarly to the

fully-informed

• Dynamic policies are over twice as valuable as static policies

• Future work on the topic could study:

• The role of endogenous liquidity constraints (↑ migration costs and ↑ climate damages)
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Thank You
RobertBaluja@gmail.com

RobertBaluja.com
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Appendix



Data: MMP

• Annual survey (since 1982) of individuals living in Mexico

• 3-5 locations are chosen each year - Not a nationally representative sample
• Previous work has found that the MMP sample has, on average, a higher level of education, and a

large oversampling of men

• Use de-censored version of life history files to construct a panel of the location of

residence for ∼ 12k people
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Length of Stay
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Estimation - Inner Loop

1. State Space Partitioning:

• Divide the individual-specific state space into n chunks.

• Assign each of the n compute nodes its own chunk.

2. Utility Calculation:

• u is linear in parameters.

• Compute a high-dimensional tensor product of utility inputs and the vector of structural

parameters.

Back



Estimation - Inner Loop

3. Value Function at T :

• For each location in state space, integrate out state transitions in time T + 1.

• Solve for V T .

4. Backward Induction:

• Use {V T (ω)} and 2. to calculate V T−1 at each point in state space.

• Repeat until t = 1.

Back



Dependent Variable: 1{Migrate}
(1) (2) (3) (4)

Average Temperature 0.00143*** 0.00142*** 0.0045*** 0.0106***

(0.00031) (0.00033) (0.0010) (0.0014)

Cooling Degree Days (26) 0.0129*** 0.0130*** 0.00589*** 0.0149***

(0.0017) (0.0017) (0.00095) (0.0024)

Heating Degree Days (14) 0.00303*** 0.00318*** 0.0075*** 0.0083***

(0.00059) (0.00059) (0.0011) (0.0016)

Agricultural Worker -0.0052***

(0.0006)

Education 0.00084***

(0.00010)

Children -0.01365***

(0.00089)

Num.Obs. 260472 260472 260472 260472

R2 0.052 0.050 0.168 0.201

FE: Year-State X X X

FE: Person X X
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Dependent Variable: 1{Migrate}
(1) (2) (3) (4)

Cooling Degree Days (26) 0.0113*** 0.00479*** 0.0180*** 0.0043***

(0.0014) (0.00085) (0.0022) (0.0017)

Heating Degree Days (14) 0.00189*** 0.0028*** -0.000027 -0.0012

(0.00039) (0.0010) (0.001404) (0.0013)

Cooling Degree Days: Away From Birth Loc 0.0071*** 0.0168*** 0.0123***

(0.0021) (0.0038) (0.0037)

Heating Degree Days: Away From Birth Loc -0.00249*** -0.0024 -0.00029

(0.00065) (0.0021) (0.00227)

Num.Obs. 260472 260472 260472 260472

R2 0.064 0.176 0.205 0.341

FE: Year-State X X X

FE: Person X X

FE: Person-Location X
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Dependent Variable: 1{Migrate}
(1) (2) (3)

Current Temperature 0.0097*** 0.0052*** 0.0011

(0.0012) (0.0012) (0.0014)

Last Year’s Temperature 0.0050*** 0.0044***

(0.0013) (0.0013)

Next Year’s Temperature 0.0052***

(0.0012)

Num.Obs. 260472 260472 260472

R2 0.200 0.200 0.200

FE: Year-State X X X

FE: Person X X X
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Flow Utility Moving Costs

Income 0.061 Moving Intercept 2.89

(0.008) (0.161)

Cooling Degree Days (26) 0.071 Distance 0.139

(0.051) (0.027)

Cooling Degree Days2 -0.074 Children 0.130

(0.015) (0.040)

Heating Degree Days (14) 0.137 Age 0.210

(0.015) (0.009)

Heating Degree Days2 -0.023

(0.002)

Urban Location -0.345

(0.011)

Birth Location 2.452

(0.41)

Log-Likelihood: -25255.83
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Hourly Income

Ag worker 0.74

(3.55)

Growing Degree Days 7.5***

(2.8)

Growing Degree Days2 -0.95**

(0.44)

Drought -0.38*

(0.20)

Inundation -0.036

(0.310)

Ag worker × GDD -3.0

(2.8)

Ag worker × GDD2 0.58

(0.52)

Ag worker × Drought 0.38

(0.25)

Ag worker × Inundation -0.44*

(0.24)

Temperate × GDD -5.1

(3.8)

Warm × GDD -6.4

(14.6)

Temperate × GDD2 0.75

(0.75)

Warm × GDD2 0.87

(2.17)

Temperate × Drought 0.77***

(0.22)

Warm × Drought 0.66**

(0.33)

Temperate × Inundation -0.56*

(0.32)

Warm × Inundation -0.13

(0.36)

Num.Obs. 3626618

R2 0.231

FE: Location, Year X

Dep. Var. Mean 27.06
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Alternative-specific value function

V t(ℓ, k , ω; θ, τ) = ER [u(ℓ, k , ω, r ; θ, τ)] + δ3EΩ,ε|τ [Vt+1(k , ω
′; θ, τ)|ω]

= ER [u(ℓ, k , ω, r ; θ, τ)] + δ3
∫

max
j

{V t+1(k, j , ω
′; θ, τ) + εj}dFω′,ε|ω,τ

= ER [u(ℓ, k , ω, r ; θ, τ)] + δ3
∫

log

∑
j∈C

exp(V t+1(k , j , ω
′; θ, τ))

 dFω′|ω,τ
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Mapping Utils to Dollars

Define some quantity u measured in utils.

1. u1 =
u
θ1

is measured in 2010 pesos per hour per year

• θ1 is measured in utils per 2010 peso per hour per year

2. u2 = u1 × hours of work per year is measured in 2010 pesos

• OECD gives that this value is 2,224 hours, for the average Mexican in 2010

3. u3 =
u2

e2010
is measured in 2010 dollars

• e2010 is the exchange rate on January 1, 2010: 12.8096

4. u4 = u3 × inflation rate2010−>2024 is measured in 2024 dollars

• I use the CPI for all urban consumers: 1.45
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Equilibrium over population shares through wages

Migration is modelled in a partial equilibrium setting. I employ the following to understand

how strong general equilibrium effects may be:

1. Simulate migration decisions with the estimated model and wage equation through 2038

2. Calculate the difference in population levels from 2023 to 2038 throughout Mexico

3. Assume that wages respond to this change in population

4. Resimulate behavior under the new wage regime

I iterate on this process until population counts converge across iterations. It takes 17

iterations to do so. Back



Heterogeneity in Values across Space
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Heterogeneity in Values across Sector of Employment
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Heterogeneity in Values across Urban-Rural
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Heterogeneity in Values across Levels of Education
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Heterogeneity in Climate Damages across Space
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Heterogeneity in Climate Damages across Sector of Employment

Back



Heterogeneity in Climate Damages across Urban-Rural
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Heterogeneity in Climate Damages across Levels of Education
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Summary statistics

Non-Migrants Migrants 2020 Census

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Education 7.66 4.25 8.76 4.96 9.03 3.63

Agricultural Worker 0.32 0.47 0.22 0.41 0.31 0.46

Children 0.95 0.21 0.93 0.26 - -

Age at Birth of First Child 23.83 4.90 24.37 4.90 - -

Number of Moves - - 2.16 1.84 - -

Age at First Move - - 22.69 6.30 - -

Move to Urban Location - - 0.32 0.46 - -

1{Stay > 1 Year} - - 0.74 0.44 - -

Born in Dry Climate 0.28 - 0.26 - 0.24 -

Born in Temperate Climate 0.41 - 0.48 - 0.59 -

Born in Warm Climate 0.32 - 0.26 - 0.17 -

Born in Urban Location 0.25 - 0.24 - 0.41 -

Number of Individuals 8406 2788
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Migration rates are increasing in warming
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Climate Model Fit

• The location-specific mapping from primary climates to growing degree days has an

adjusted-R2 of 0.985

• If we remove all location-specific intercepts, the adjusted R2 is 0.640 (this only looks at

within-location variation in GDD explainable from variation in the primary climate’s mean

temperature)

• The location-specific mapping from primary climate temperature to degree days above

26◦C has a McFadden pseudo-R2 of 0.240

• The location-specific mapping from primary climate temperature to degree days below

14◦C has a McFadden pseudo-R2 of 0.240

• The model for the likelihood of drought has a McFadden pseudo-R2 of 0.041

• The model for the likelihood of flood has a McFadden pseudo-R2 of 0.101
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The model fits the data well

Migration Rate

Model Data

Overall 5.4% 4.7%

Children

Yes 5.2% 3.4%

No 5.4% 7.2%

Agricultural Worker

Yes 4.5% 3.5%

No 5.8% 5.3%

Years of Education

0-5 5.0% 4.2%

6-11 5.3% 3.8%

12+ 6.1% 7.5%

Notes: For each category, I calculate the average

migration rate predicted by 100 model simulations

of the life trajectories of the individual-year

observations used in estimation.
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Migration as adaptation to climate change is progressive

% ↑ in the value of the ability to move,

from BAU warming

New workers today Children born today

Climate Figure

Dry 128% 314%

Temperate 12% 11%

Warm 1020% 2092%

Agricultural Worker Figure

Yes 471% 987%

No 201% 469%

Years of Education Figure

0–5 379% 832%

6–11 280% 641%

12+ 205% 480%
Notes: Shown are the percentage change in the average 2020 lifetime value of

migration, of business-as-usual warming compared to limited warming, across

different demographic and spatial groups. BAU represents business-as-usual: the

CMIP6 SSP2 4.5 scenario.
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Derivation of naive value function

V
nt
t (ℓ, ℓ′, ω) = u(ℓ, ℓ′, ω) + δ3E

[
V nt
t+1(ℓ

′, ω′)|ω
]

= u(ℓ, ℓ′, ω) + δ3
∫∫ {

V
nt
t+1(ℓ

′, j , ω′) + E [εj |dn = j ]
}
dGn(j |ℓ′, ω′)dF (ω′|ω)

= u(ℓ, ℓ′, ω) + δ3
∫∫ {

V
nt
t+1(ℓ

′, j , ω′) + γ

+ log

(
27∑
k=1

exp
(
V

n
t+1(ℓ

′, k, ω′)− V
n
t+1(ℓ

′, j , ω′)
))}

dGn(j |ℓ′, ω′)dF (ω′|ω)
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