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In this paper, I study how effectively migration will reduce experienced climate damages. To
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a tool of adaptation to climate change. Moreover, the fraction of the population that I estimate
as forming naive expectations of the climate system would experience an average of 2% lower
lifetime climate damages from becoming fully informed on the climate transition. Given that
most of the increased damages this population faces come from a reduced propensity to migrate,
one way to reduce these losses is to subsidize migration. I find that subsidizing migration at
the average level of the internality reduces their welfare losses by 8–19%. The exact value of
this reduction depends on whether the policy forces people to use the subsidy in a particular
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1 Introduction

Earth’s climate is changing in ways that modern humanity has never experienced. We are already
observing large-scale changes to the physical systems governing our oceans and the atmosphere,
resulting in changes to the frequency and severity of extreme heat and precipitation events throughout
the planet (IPCC, 2022). Although we have yet to understand the full extent of these changes on the
habitability of the many regions of the world (Sherwood and Huber, 2010; Mora et al., 2017), history
tells us that humans will find a way to adapt to our new environment. One of the most prominent
ways that we have historically adapted to environmental change, and specifically to climate change,
is through migration (Hornbeck, 2012; Timmermann and Friedrich, 2016; Waldinger, 2022).

In this paper, I ask how valuable migration will be as a tool to mitigate the damages associated
with future changes to the climate. To answer this question, one must first understand how the
decision to migrate will be impacted by the changing climate. I develop and estimate, using a
full solution routine, a microfounded dynamic model of migration within Mexico in response to
climate change. Individuals are modeled as making a series of decisions of where to live within
Mexico. Each time they make this decision, they understand that they will live in their chosen
destination until they have the opportunity to move again. The dynamic nature of the decision of
where to live requires that individuals form expectations about the future climate in each of their
potential destinations. Given the complexity of the climate system, I allow individuals to form either
fully-rational or naive1 expectations over its transition path.

Migration is both costly and a difficult decision to reverse (Kennan and Walker, 2011). Moreover,
past work has highlighted that a sizeable fraction of the population will experience prohibitively
high psychological costs from moving (Koşar et al., 2022). Completely accounting for these costs is
critical when seeking to understand the effectiveness of migration as an adaptive strategy to the
damages of climate change. As such, my model allows individuals to have such high psychological
frictions from migration that they never consider it as an option. Those that do consider the trade-offs
of migration make their decision of whether and where to move based on a comparison of the
expected benefit of moving to a particular location, accrued across the remainder of their lifetime,
with the psychological and monetary cost associated with making such a move today.

I find that domestic migration within Mexico is an important mechanism for limiting the damages
of climate change. As of the 2020 Census, the average 17–19-year-old stands to face 28% lower
climate damages, from business-as-usual warming, over their lifetime, because of their ability to
migrate. The average reduction in damages masks important variation across the population. For
those living in the warmest regions of the country, the ability to migrate is projected to reduce their

1I model individuals who form naive expectations of the climate system as observing the weather in all locations in
the current period and assuming that future weather will be the same as the current period.
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expected lifetime welfare losses from business-as-usual warming by 35%, as compared to the 3%
reduction faced by those already living in the temperate regions. Those employed in agricultural
sectors and those with the lowest levels of education stand to face reductions of 32%, compared
to the 28% reduction faced by those in other sectors and those with at least 12 years of education.
As time, and as a result, warming, progresses, our ability to migrate in response to climate change
will become increasingly important. Those who were less than 2-years-old in 2020 are projected
to experience an average of 33% less damages over their lifetime from business-as-usual warming
when allowed the option to migrate.

Our ability to migrate in response, or more broadly dynamically adapt, to climate change rests on
our ability to correctly anticipate future changes to the climate. This has the potential to be a cause
for concern, as recent international surveys have highlighted that although a large fraction of the
population understands that climate change is happening, they also report a lack of understanding of
it (Leiserowitz et al., 2022). Using the estimated model, I find that the projected lifetime climate
damages, on average, would be 2% less for the climate-naive if they were to become fully-informed.2

The majority of the welfare losses to the climate-naive come from a reduced propensity to move,
rather than from the decision to move to suboptimal locations. Indeed, relative to the decisions
one would make with full information, I find that, for the climate-naive, mistakenly choosing to
remain in one’s location leads to an average loss to lifetime welfare of $9,007. This is much larger
than the average welfare losses from making a mistake during one’s move: $3,796. Moreover, the
climate-naive are more than three-times as likely to mistakenly remain in their location as they are
to mistakenly move. Taken together, this implies that one way to reduce the welfare losses to this
population is to subsidize domestic migration.3 I find that such policy has the potential to be quite
effective: subsidizing migration at the value to the climate-naive from becoming fully-informed
reduces the lifetime welfare losses borne by the climate-naive by between 8% and 19%.

The differences in the effectiveness of policies which affect moving costs are driven by the
dynamic structure of the different policy options; that is, the structural differences between policies
which are offered only one-time and those which are available to be used at the time of an individual’s
choosing. Dynamic policies create value to the population by giving individuals the flexibility to
choose to move when it is most valuable for them to do so. This additional flexibility causes dynamic
policies to positively select from the portion of the population marginal to a similarly-priced static
policy. The selection effects of dynamic policies are of first-order concern: differences in who
decides to use the different policies causes dynamically-minded reductions to moving costs to be

2It is possible that the individuals who I estimate to be climate-naive actually have very high discount factors. These
differing explanations yield similar results in terms of the welfare impacts of climate change, but will have different
implications for optimal policy responses.

3Such policies are commonplace: Canada, the United Kingdom, and the United States have tax codes which
historically allow for tax-deductible moving expenses.
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over twice as valuable to movers as similar static policies. Moreover, the value placed on the ability
to move in the future drives a similar increase in the value of the policy to the climate-naive.

To answer my research questions, I estimate the lifecycle model using rich microdata from the
Mexican Migration Project (MMP). These data contain information on the life histories of more than
11,000 individuals living and working in Mexico from 1950 to 2019. Given the large changes to the
climate in Mexico over this time period, and similar to the long-difference strategy employed in the
reduced form literature (Burke and Emerick, 2016), I exploit true change in the climate over time,
across space, to identify the relevant primitives of the model. For example, I identify the proportion
of the population forming naive and fully-informed expectations about the climate system using data
on observed individual decisions along with variation in the rates of warming across both space and
time.

Estimation of the model primitives follows a two-step procedure. In the first stage, I use
high-quality gridded weather data to estimate a non-stationary model of the climate system that
varies throughout the country. I then estimate heterogeneous mappings from the relevant climate
variables (average daily temperature and agricultural-season precipitation) to various statistics of
weather that are designed to differentially capture the impact of extreme heat on crop yields and
human well-being, along with the risk of drought and flood. I supplement the MMP data with
historical surveys on wages to estimate a wage equation that depends on individual demographics,
sector of employment, weather, and the location of residence. I take these estimated mappings to
the second stage, where I estimate the model primitives. I employ a nested full-solution pseudo
maximum likelihood routine (Rust, 1987), taken over a finite mixture (Heckman and Singer, 1984),
to estimate the model primitives: the preference parameters and the mixing probabilities for the
unobserved moving and belief types.

My estimation framework allows for an internally consistent model of climate-induced migration
that avoids the need to calibrate anything other than the discount factor. I combine the estimated
model with data from the 2020 full-count Census and high-quality future climate projections under a
business-as-usual scenario (Thrasher et al., 2022) to simulate the choices for each Census-enumerated
male living in Mexico in 2020, across the remainder of his lifetime.4 This framework allows me
to make changes to the environment, through changes to the climate system and the moving costs,
to recover welfare metrics of interest. For example, once the model is estimated, to estimate the
value of migration one need only calculate average welfare under both the status-quo and in a
counterfactual environment where moving is completely restricted.

I build on four main streams of the literature. First, I contribute to the literature seeking to

4Of particular note, my counterfactuals do not venture very far from the data used to estimate the model. When
estimating the model, I have to solve for the optimal choices given any particular state one could find themselves in for
the remainder of their modeled-lifetime. This requires that I solve the model through the year 2064; I use daily data
from the business-as-usual climate projection when solving the model beyond the present day for the fully-informed.
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measure the damages of climate change. This body of work can be broken into two primary branches:
a reduced form and a general equilibrium literature. The reduced form work in this sphere has made
use of various econometric tools to identify how economic outcomes of interest will be affected by
climate change (Mendelsohn et al., 1994; Schlenker and Roberts, 2009; Carleton et al., 2022).5 This
body of work generally specializes to static forms of adaptation (Carleton et al., 2024);6 however,
many potentially valuable types of adaptive behaviors are instead driven by long-term expectations
over a non-stationary climate system.7 I contribute to this literature by providing novel estimates of
the value of dynamic forms of adaptation to climate change by jointly identifying the dynamic costs
and benefits of migration as adaptation to climate change.8

Another branch of this literature has applied general equilibrium tools. Their general approach
is to study the role of adaptation for limiting the damages of climate change through counterfactual
analyses (Desmet and Rossi-Hansberg, 2015; Conte, 2022; Rudik et al., 2022).9 In applying modern
tools from the spatial economics literature, this work generally imposes climate change as a series
of steady-state to steady-state changes, which allows them to develop rich environments to study
how climate change will affect important components of the global economy; including capital
investment (Bilal and Rossi-Hansberg, 2023), global migration (Cruz and Rossi-Hansberg, 2023),
and optimal infrastructure planning (Balboni, 2024). In contrast, I develop a rich, partial equilibrium
framework10 upon which I am able to exploit microdata11 to lay dynamic microfoundations beneath
the structural and large-scale changes that this literature has highlighted will arise from climate
change while also explicitly studying the frictions that will inherently be present between any two

5Carleton et al. (2024) provides an in-depth and comprehensive review of this literature.
6Rudik et al. (2022) and Lemoine (2024) are notable exceptions.
7In Section 6, I highlight that analyzing a dynamic form of adaptation, such as migration, through a static lens will

lead to biases. In this case, a static analysis would undervalue the effectiveness of migration as adaptation to climate
change.

8The discrete choice framework I design, coupled with the rich microdata I use in estimation, explicitly identifies the
average psychological and monetary cost, amongst those who consider moving, associated with migration as adaptation
to climate change, as measured in dollars. Much of the literature has worked towards identifying the benefit of adaptation
to climate change. Identifying the costs associated with these actions has remained elusive (Carleton et al., 2024). That
said, we have long understood that a careful accounting of the costs of adaptation is an important input to a complete
understanding of the value of adaptation to limiting the damages of climate change (e.g., Hanemann, 2000).

9This literature has found mixed results as to the value of migration for limiting the damages of climate change;
work which specializes to the United States generally finds negligible impacts (e.g., Rudik et al., 2022; Bilal and Rossi-
Hansberg, 2023) while those who study global migration generally find large impacts (e.g., Desmet and Rossi-Hansberg,
2015; Cruz and Rossi-Hansberg, 2023). Similar to the global analyses, I estimate a large value of migration for limiting
the damages of climate change. Keeping with the literature on the differences in climate-migration across variation in
national-incomes (e.g., Cattaneo and Peri, 2016), this is likely driven by my focus on a middle-income country.

10As discussed in Section 6, I design a stylized framework to check how equilibrium forces, through congestion
impacts on wages, may affect my primary results. I find that these impacts do not seem to be of first-order concern in
my context. Much of this is likely due to the relatively short time horizon I analyze.

11Makridis and Ransom (2018) and Mathes (2024) also use microdata to estimate models of migration in response to
climate change. Both use data from the United States and assume a stationary climate with no uncertainty, from the
purview of the decision-makers. I extend their work by allowing for a non-stationary and uncertain climate.
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steady-states.
More concretely, I contribute to this literature in three primary ways. First, the detailed microdata

allow me to cleanly identify the individual dynamic drivers behind climate migration, including
the large and heterogeneous moving costs.12 The rich microdata also allow me to understand how
individual-level heterogeneity creates variation in the effectiveness of migration as adaptation to
climate change; for example, I am able to separately study how agricultural workers and those in
other sectors will differentially experience and respond to the damages of climate change through
domestic migration,13 which can help policymakers target climate policy towards its most efficient
use. Second, the microfoundations underlying my model allow me to understand how the structure
of implementable policy interacts with individual-level incentives, and how these interactions vary
across the population.14 Finally, my approach allows me to highlight the role of expectations about
the future climate system on current adaptive decisions,15 by both identifying heterogeneity in these
beliefs and by showing how such biases will lead to a reduction to the value of dynamic forms of
adaptation to climate change.

Second, I contribute to the literature which has emphasized the existence of an “adaptation
gap” with respect to climate change (e.g., Carleton and Hsiang, 2016). Zappalà (2024) is the
first, and to my knowledge only, article to highlight that a portion of this gap is likely driven by
inconsistent beliefs about the climate. Similar to Zappalà (2024), I find that naive expectations of
the climate system will lead to lower-than-optimal rates of adaptation to climate change. I highlight
the generality of this finding, and extend the discussed literature by using my estimated model and
counterfactual simulations to argue for the broad role that policy, by subsidizing adapting behaviors,
can play in helping to close the “belief gap.”

Third, I contribute to the literature seeking to uncover the value of migration, irrespective of
climate change. One branch of this literature has used reduced form techniques, generally in the
form of natural and quasi-experiments. More specifically, they study how arguably exogenous shifts
in the propensity to migrate change lifetime outcomes (Deryugina et al., 2018; Nakamura et al.,

12For example, I estimate that much of the population (37%) never considers moving, and thus may experience very
large psychological costs if they are forced to move because of climate change. Amongst those that do actively consider
moving, I estimate large differences in the full cost of migration across the lifecycle; parents and the elderly are much
less likely than the young and the childless to see migration as an attractive form of adaptation to climate change.

13I find that today’s agricultural workers value their ability to migrate 86% more than those employed in other sectors,
while the agricultural workers of the near future will value this ability 95% more than those employed in other sectors.

14For example, I find that climate-naive agricultural workers value their ability to choose the timing of when to
migrate at a reduced cost 37% more than the climate-naive who are employed in other sectors.

15Bilal and Rossi-Hansberg (2023) is closest, from this literature, to my work. They study the value of the ability to
anticipate future warming on economic outcomes in the U.S., including migration. They do so by comparing simulations
where agents are fully and perfectly informed about future warming to a counterfactual where agents instead believe
future weather will be identical to that of the current period - what I coin climate-naivety. In terms of heterogeneous
beliefs, I advance their work by identifying that such individuals do indeed exist, at the cost of studying only migration
as adaptation to climate change.
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2021; Sarvimäki et al., 2022). This literature has found that migration can be quite valuable, however
almost all of this work has found that this value varies strongly throughout the population.

Another branch of the literature studying the value of migration has used dynamic discrete
choice methods to directly model the moving decision to account for the fact that migration is
an endogenous choice (Bishop, 2008; Kennan and Walker, 2011; Lessem, 2018). This work is
situated in a partial equilibrium context; my primary contribution to this literature is therefore my
equilibrium framework over wages, which I use in counterfactuals.16 Topically, I also contribute to
this literature by highlighting how the value of migration can change, across the population, over
time, in a non-stationary environment, in this case, from climate change.

Finally, I contribute to the broader dynamic structural estimation literature by providing a novel
way of using exogenous information from a first stage to break the curse of dimensionality when
estimating a dynamic structural model (Rust, 1987). More specifically, I develop a framework which
exploits an exogenous, and therefore estimable outside the dynamic estimation routine, mapping
between the variation of interest (e.g. growing degree days, extreme heat, cold, drought, and floods)
and a set of moments. I break the curse of dimensionality by modeling individuals as tracking
these moments and using the estimated mappings to recover the variation relevant to their decision.
This framework is similar in spirit to moment-based approximate equilibrium concepts, which are
used to reduce the dimensionality problem associated with models of strategic behavior (Ifrach
and Weintraub, 2016; Gowrisankaran et al., 2024b). I adapt their approach to instead manage the
dimensionality problem arising from the high-dimensional nature of the climate system. This can
make it easier for future work to study the dynamic interactions between high-dimensional objects
and individual choices, for example, other forms of dynamic adaptation to climate change.

The remainder of this paper is structured as follows: Section 2 describes the data and various
reduced form empirics and summary statistics that motivate the dynamic model. Section 3 presents
the dynamic model. Section 4 provides intuition on the estimation strategy and sources for identifying
variation in the preference parameters. Section 5 presents the estimated parameters and details how
well the model fits reality. Section 6 provides the setup used in counterfactual simulations and the
results of these exercises. Section 7 discusses and contextualizes the results of the paper, concludes,
and provides avenues for future research on this topic.

2 Data & Empirical Motivation

I use data from the Mexican Migration Project (MMP) surveys to estimate the model described
in Section 3. I supplement these data with historical climate data from Livneh et al. (2015) and
Thornton et al. (2022); climate projection data from Thrasher et al. (2022); and wage data from

16I highlight that it is possible, but quite computationally challenging, to allow for equilibrium in estimation.
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the ENIGH and ENE Mexican surveys. Furthermore, in counterfactual simulations, I use data on
demographic distributions at the municipality level from the 2020 Mexican Census count.

Data

Mexican Migration Project

I use the life-history files from the Mexican Migration Project surveys to estimate the preference
parameters governing the structural model. These surveys contain annual information on the location
of employment at the municipality level for a sample of over 28,000 individuals17 living in Mexico
for each year of their life. I also use both demographic and personal characteristics contained in
these files, such as their birth location, level of education, and the year of birth for each of their
children.

Most climate-induced migration to date has been within a country’s border (IPCC, 2022).
Therefore, to study only internal migration, I restrict the life histories to individuals who reside
within Mexico for their entire recorded history. The publicly available life history data censor many
of the municipalities of employment and birth to maintain the confidentiality of the respondents;
however, I received the censoring algorithm and used it to fill in these missing observations where
possible. I therefore further restrict the data to only those individuals who either have a known
municipality of birth or whose municipality of birth was successfully decensored. Similarly, I
remove all individuals who, after employing the decensoring and an imputation algorithm, have
any observations with missing employment municipalities. After these restrictions, I am left with
11,194 unique individuals, covering the years 1950 through 2019.18 After aggregating the data from
annual to triennial observations,19 I am left with 90,578 person-year observations for estimation.

Wages

A limitation of the MMP data is that although information on annual location and sector of
employment is provided, the survey did not collect information on income. I therefore use data
from the following two census surveys to estimate a series of wage equations that I then use when
estimating the model: La Encuesta Nacional de Ingresos y Gastos de los Hogares (ENIGH) and La
Encuesta Nacional de Ocupación y Empleo (ENOE). I use the ENIGH surveys from 1984 to 2006,
and the quarterly ENOE surveys from 2007 to 2019. I subset the above survey data to match the
selected MMP sample: only males between the ages of 17 and 60 who are heads of household and

17The MMP data primarily contain the life histories for the head of the household. In Mexico, during my sample
period (1950–2019), this is an overwhelmingly male population. For this reason, I focus my analysis on males.

18As discussed in Section 3, I begin modeling each individual’s choices when they turn 17. As such, I model decisions
from 1967 to 2064. The end point of this range represents the year of the final decision for a 17-year-old in 2018.

19The aggregation procedure is discussed in Appendix A.1.
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not self-employed, who reside in one of the municipalities lived in by an individual in the MMP data,
who have a positive monthly income, and whose sector is not listed as missing. This leaves me with
5,841,519 observations in the repeated cross-section. I discuss these data in detail in Appendix A.2

Historical Climate

I use historical weather data from two sources to understand the relationship between extreme
weather outcomes, migration, and wages: Livneh et al. (2015) (Livneh) and Daymet (Thornton
et al., 2022). Both sources provide gridded data based on daily data from weather stations.20 These
data are used to obtain measures of the temperature and total level of precipitation across each
municipality in Mexico. I use Livneh for the early years of the panel (1930–1979) and Daymet for
the later years (1980–2018). I match the datasets on their 1980 values to ensure that the combined
panel is corrected for differences in levels between the two.

I use data on the standardized precipitation-evapotranspiration index (SPEI) to calculate both
drought and flooding at the municipality-year level (Vicente-Serrano et al., 2010). SPEI is calculated
by applying a normalizing transformation to the difference between precipitation and potential
evapotranspiration at a given timescale and point in space. Following the literature (e.g., McKee
et al., 1993), drought is defined as occurring when the calculated SPEI is below -1.5. To focus on
drought most relevant to agriculture, I define a location as being in a drought when the minimum
daily SPEI is below the drought cutoff during the summer agricultural growing season, defined as
May through October (Jessoe et al., 2018). Given that the SPEI can be interpreted as the approximate
number of standard deviations that the climatic water balance is above or below the mean, I define
flooding analogously to drought — that is, a maximum daily SPEI above 1.5.

Climate Projections

I use the output from 25 high-resolution, bias-corrected climate simulation models, provided by
NASA Earth Exchange (NEX) (Thrasher et al., 2022). These data provide information on daily
projected temperatures and precipitation levels on a 0.25 × 0.25 degree grid, at a global scale. Even
after bias-correcting algorithms are used, individual climate models are generally biased in that
their predictions are model-specific (Auffhammer et al., 2013). To partially remedy this issue, I
perform two additional debiasing exercises. First, I average the daily gridded values over many
of the individual models (Burke et al., 2015; Rudik et al., 2022). Second, I match the resulting
data with the 2020 values from the historical weather data to correct for biases in levels from the
climate model output. I use a moderate warming scenario to represent climate change: the Shared
Socioeconomic Pathway 2-4.5 (SSP2-4.5). This climate pathway is one of five primary scenarios

20Livneh is gridded at at 1/16 ° resolution (∼ 6km at the equator) and Daymet at 1 km.
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used in the Intergovernmental Panel on Climate Change’s sixth assessment report and represents a
business-as-usual scenario following historical patterns (Riahi et al., 2017). Hsiang and Kopp, 2018
provides a high-level overview of climate change science for economists and discusses the different
SSPs.

Daily Measures of Weather

Each of the sources of weather data is produced at the daily level. Given the annual nature of
the MMP data, these daily weather outcomes must be aggregated up to annual statistics. To do
this, I construct three different measures of extreme temperature outcomes, differentiated by their
importance for agricultural productivity and amenity values.

Following the literature (e.g., Feng et al., 2010; Liu et al., 2023), I model the impact of
temperature on wages primarily through an agricultural channel, and more specifically, through its
impact on maize production based on growing degree days.21 A growing degree day (GDD) is a
piece-wise linear function, with a crop-specific upper and lower discontinuity. In the case of maize,
the functional form is

𝐺𝐷𝐷 (temp) =


0 if temp < 8

temp − 8 if 8 ≤ temp ≤ 32,

24 if temp ≥ 32.

This mapping from daily heat is used throughout the agronomy literature (Herrero and Johnson,
1980; Wilson and Barnett, 1983; Bassetti and Westgate, 1993) and captures the fact that plants are
able to absorb additional energy from heat, up until some threshold. I calculate growing degree
days at the municipality level as the sum of all daily levels across the summer growing season (May
through October).

Growing degree days are specifically designed with crops in mind. To capture amenities over
extreme heat, or lack thereof, I also make use of degree days above and below a given threshold 𝑥.
Degree days above 𝑥 is a recentered and truncated linear function in daily temperature, which is zero
until 𝑥 then increases linearly without bound when the temperature is above 𝑥. Similarly, degree
days below 𝑥 is zero when the daily temperature is above 𝑥 and increases linearly in the absolute
difference between 𝑥 and the daily temperature when the daily temperature is below 𝑥.22 Such

21Maize is the most sown crop in Mexico (SIAP, 2022) and is grown during the summer months in every state in the
country. The impact of weather on wages is modeled as entering through maize yields. This directly impacts the wages
of agricultural employees, which spills over into non-agricultural sectors through general equilibrium channels. One of
these is through decreases in local demand for non-agricultural products (Liu et al., 2023). As will be made apparent in
Section 4, I capture such effects through a richly specified first stage wage equation.

22Cooling and heating degree days are generally used by the U.S. Energy Information Administration to predict
energy requirements for cooling and heating. They use a cutoff of 65°F for these calculations.
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statistics are computed using the average daily temperature. To bring these statistics to the annual
level, I sum the calculated daily-level degree days over all days in a given year. Mathematically,
daily-level degree days above 𝑥 can be written as:

𝐷𝐷𝑥 (temp) =


0 if temp ≤ 𝑥

temp − 𝑥 if temp ≥ 𝑥,

and daily-level degree days below 𝑥 as:

𝐷𝐷𝑥 (temp) =

𝑥 − temp if temp ≤ 𝑥

0 if temp ≥ 𝑥.

I use degree days above 26°C, which I label DD26, and degree days below 14°C, which I label
DD14. I justify these thresholds in the next section.

Empirical Motivation

Migration is a relatively rare event in one’s life. This fact is readily apparent in the MMP data: just
over 2.3% of person-year observations include an inter-municipality move from 1967 through 2018.
Moreover, since many individuals never decide to move during their lifetime, the gains from such
moves are concentrated in a small subsample of the overall population. The MMP data record that
just under 25% of the observed population ever moved in their recorded life-history. Panel (a) of
Table 1 looks at how the subpopulations of movers and nonmovers differ along a few important
dimensions. In particular, migrants, on average, have higher levels of education, are less likely to be
employed in agriculture, and are somewhat older when they have their first child.

Panel (b) of Table 1 studies the characteristics of the moves that migrants make. Most moves
occur when an individual is relatively young, with the average age of a migrant on their initial
move being just over 22 years old, and the average age for all moves being a bit older: 25 years old.
Almost 70% of moves are to rural locations. To put this into perspective, 70% of moves originating
in a rural location are to another rural location, while 65% of moves originating in an urban location
are to a rural location. Among individuals born in urban locations, this proportion is much smaller
— about 38% for both moves originating in rural and urban locations. Figure A1 plots the empirical
density of the number of moves made by migrants. One can readily see the high value associated
with the consideration of future migration: the majority of migrants (65%) move more than once,
with a large fraction (21%) moving more than twice. Moreover, the average number of moves is just
over two, and almost three-quarters of observed moves last over one year, with the average length of
stay being 7.4 years (median of 4 years). Given the long duration of most moves, a model that does
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Table 1: Descriptive Statistics

Non-Migrants Migrants 2020 Census

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Panel (a)
Education 7.66 4.25 8.76 4.96 9.03 3.63
Agricultural Worker 0.32 0.47 0.22 0.41 0.31 0.46
Children 0.95 0.21 0.93 0.26 - -
Age at Birth of First Child 23.83 4.90 24.37 4.90 - -

Panel (b)
Number of Moves - - 2.16 1.84 - -
Age at First Move - - 22.69 6.30 - -
Move to Urban Location - - 0.32 0.46 - -
Stay > 1 Year - - 0.74 0.44 - -

Panel (c)
Born in Dry Climate 0.28 - 0.26 - 0.24 -
Born in Temperate Climate 0.41 - 0.48 - 0.59 -
Born in Warm Climate 0.32 - 0.26 - 0.17 -
Born in Urban Location 0.25 - 0.24 - 0.41 -

Number of Individuals 8406 2788
Note: Education and age are measured in years, agricultural worker is one if an individual works in
agriculture at least 25% of their observed life history, and zero otherwise. Children is one if an individual is a
parent at the time of the survey, and zero otherwise.

not allow for dynamic considerations will mistakenly attribute the value of individual moves, across
time, to a single year. Moreover, dynamics are necessary to rationalize both the high number of
moves made by migrants and the relative infrequency of overall migration.

Panel (c) of Table 1 shows the distribution of birth locations across both the three primary
Köppen climate zones in Mexico and urban locations. There is a good amount of variation along
these dimensions; however, more importantly, the proportions of births within each of these groups
matches somewhat closely to the locations of individuals in the 2020 decennial census. Specifically,
the 2020 census places 24% of the population in dry climates (versus 28%), 59% in temperate
climates (versus 42%), 17% in warm climates (versus 30%), and 41% in urban locations (versus
25%).

Figure 1 plots the results from a linear probability model of the decision to migrate on the
number of days in the previous year that the average daily temperature falls within each 2° C bin,
conditional on age, expected wage, and individual and state-by-year fixed effects. Estimation of the
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Figure 1: Nonlinear effect of daily temperatures on the probability of migration, conditional on
expected wage, age, and person and state-year fixed effects. Linear probability model using MMP
data for migrants. The histogram plots the average number of days in each bin, taken across the
estimation sample. The 95% confidence bands, corresponding to standard errors clustered at the
person and year-by-municipality level, are plotted around the point estimates.
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Table 2: Daily Extreme Weather Increases the Probability of Migration

Dependent Variable: 1{Migrate}

(1) (2) (3) (4)

Average Temperature 0.00143*** 0.00142*** 0.0045*** 0.0106***
(0.00032) (0.00033) (0.0013) (0.0016)

Degree Days above 26°C 0.0129*** 0.0130*** 0.0059*** 0.0149***
(0.0021) (0.0021) (0.0013) (0.0026)

Degree Days below 14°C 0.00303*** 0.00318*** 0.0075*** 0.0083***
(0.00055) (0.00057) (0.0014) (0.0017)

Agricultural Worker -0.0052***
(0.0010)

Education 0.00084***
(0.00015)

Children -0.0136***
(0.0011)

Num.Obs. 260472 260472 260472 260472
R2 0.052 0.050 0.168 0.201
FE: Year-State ✓ ✓ ✓
FE: Person ✓ ✓

Note: DD26 (DD14) represents 100 annual degree days above (below) 26°C (14°C). Education is
measured in years of schooling, agricultural worker and children are indicator variables representing
whether an individual is employed in the agricultural sector and has children, respectively. Standard
errors are two-way clustered at the person and year-by-municipality level. *p < 0.1; **p < 0.05;
***p < 0.01

marginal probabilities induced by this model makes comparisons only among migrants, comparing
the number of days in each temperature bin in years that they do move to years that they do not,
conditional on any macroeconomic trends that occur at the state-year level. The x-axis plots the
rightward limit of the bin,23 with < 14 containing all days below 14° C, and ≥ 30 containing all
days with an average temperature greater than 30° C. The plotted effect shows the increase in the
average propensity to migrate if I replace 10 days in the 18–20° C bin with 10 days in the given bin.
One can see a clear nonlinear relationship between daily temperatures and migration decisions. In
particular, days above 26° C are more than twice as important in predicting migration decisions
as the very next bin containing days between 24 and 26° C. Although Figure 1 makes clear that
heat is a much stronger correlate with the decision to migrate than cool temperatures, there is still a
significant impact of cool days below 14° C. For this reason, I focus on degree days above 26° C and
below 14° C.

Table 2 presents the results from a series of linear probability models of the decision to migrate

23For example, “28” corresponds to the bin between 26 and 28° C.
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Table 3: Reduced Form Mechanisms

Dependent Variable: 1{Migrate}

(1) (2) (3) (4)

Degree Days above 26°C 0.0113*** 0.0048*** 0.0180*** 0.0043**
(0.0018) (0.0010) (0.0024) (0.0017)

Degree Days below 14°C 0.00189*** 0.0028*** -0.000027 -0.0012
(0.00039) (0.0011) (0.001459) (0.0013)

DD26: Away From Birth Loc 0.0071*** 0.017*** 0.0123***
(0.0025) (0.004) (0.0038)

DD14: Away From Birth Loc -0.00249*** -0.0024 -0.00029
(0.00078) (0.0024) (0.00233)

Num.Obs. 260472 260472 260472 260472
R2 0.064 0.176 0.205 0.341
FE: Year-State ✓ ✓ ✓
FE: Person ✓ ✓
FE: Person-Location ✓

Note: Degree days 26 (14) represents degree days above (below) 26 (14)° C. “Location” refers to the
elements of the choice set, defined in Section 3 of the text. Standard errors are two-way clustered at the
person and year-by-municipality level. *p < 0.1; **p < 0.05; ***p < 0.01

with different levels of fixed effects and controls. All four columns show that the primary weather
variables of interest — average temperature, degree days above 26°C, and degree days below 14°C
— are important correlates with the decision to migrate out of an area. This remains true even when
making comparisons only among migrants (column 3), and even when additionally controlling for
any local state-by-year-level macroeconomic shocks (column 4). The first column shows that the
primary demographic variables used in the model strongly correlate with the decision to migrate.
Agricultural workers are 23% less likely to move than those employed outside this sector; parents
are 59% less likely to move; and each additional year of education, on average, correlates with a 4%
increase in the likelihood of a move.

Although the above analysis shows that individual migration decisions are correlated with the
heat and cold experienced, it may be the case that the MMP sampling locations happen to have
a different climate than the destinations of most moves. To address this possibility, I conduct
two empirical robustness exercises and report the results in Table 3. The first three columns test
the differential impact of experienced degree days above 26°C and below 14°C on the migration
propensity when an individual is and is not currently residing in their location of birth. Column
3 includes both person and state-year fixed effects and is thus the preferred specification. The
estimates of the non-interacted degree day effects come from comparisons of the number of degree
days when an individual lives in their birth location in the years that they do and do not choose to
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Table 4: Model-Free Evidence of Forward Looking Beliefs over the Weather

Dependent Variable: 1{Migrate}

(1) (2) (3)

Current Temperature 0.0097*** 0.0052*** 0.0011
(0.0013) (0.0014) (0.0016)

Last Year’s Temperature 0.0050*** 0.0044***
(0.0015) (0.0015)

Next Year’s Temperature 0.0052***
(0.0014)

Num.Obs. 260472 260472 260472
R2 0.200 0.200 0.200
FE: Year-State ✓ ✓ ✓
FE: Person ✓ ✓ ✓

Note: Temperature is measured in degrees Celsius. Standard errors are two-way
clustered at the individual and year-by-municipality level. *p < 0.1; **p < 0.05;
***p < 0.01

migrate. I find that a 100 unit increase in degree days above 26°C increases their probability of
migrating by 78%. On the other hand, the estimate of the impact of degree days above 26°C when
an individual is away from their location of birth compares the number of degree days above 26°C
in all years that they are away from their birth location to the number of degree days in the years that
they decide to move and are living somewhere other than their birth location. I find that an increase
of 100 degree days above 26°C increases the probability of migration by an additional 41%. Most
importantly, this exercise shows that individuals are responsive to the heat both when they are living
in and away from their location of birth.

The final column of Table 3 studies the impact of degree days above 26°C and degree days below
14°C on the probability of migration, controlling for person-location and state-year fixed effects.
Locations are defined as the elements of the choice set, as given in Section 3, and are areas with
similar climates and financial opportunity. The estimation of this specification compiles the average
number of degree days each year that an individual living in a particular location experiences and
compares this number in years that they do not decide to move to the years when they do decide
to move, holding fixed any macroeconomic shocks at the state-year level. I find that individuals
are more likely to move in years when there happens to be higher-than-normal levels of degree
days above 26°C, where “normal” is defined against the average number of degree days that this
individual experienced in that particular location.

The evidence in Table 3 verifies a strong correlation between the weather a person has experienced
and the likelihood of moving. I now examine whether individuals are forward-looking with respect
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to weather and how they form these beliefs about future outcomes. The first column of Table 4
shows that, conditional on person and year-state fixed effects, the current year’s municipality-level
experienced temperature is a strong correlate of the decision to migrate. When I add the previous
year’s temperature to the linear probability model in Column 2, the estimated coefficient drops by
nearly half, with the current and previous years’ temperatures each receiving half of the importance
in predicting migration decisions. One explanation for the importance placed on the previous
temperature, conditional on the current temperature, is that individuals use this information in
predicting next year’s temperature, which is what is likely to drive this year’s migration decisions.
To provide evidence of this mechanism, in the third column, I add next year’s temperature to the
model. One can now see that both the future and previous year’s temperature, conditional on the
current temperature, are the important drivers behind the decision to migrate.

Table 5: Static Logit Parameters

Flow Utility Moving Costs

Income 0.059 Moving Intercept 2.891
(0.006) (0.073)

Degree Days above 26°C 0.067 Distance 0.139
(0.058) (0.011)

Degree Days above 26°C2 -0.074 Children 0.129
(0.021) (0.042)

Degree Days below 14°C 0.134 Age 0.209
(0.011) (0.009)

Degree Days below 14°C2 -0.022
(0.002)

Urban Location -0.342
(0.050)

Birth Location 2.452
(0.024)

Log-Likelihood: -25255.83
Note: Income is measured in annual hourly 2010 pesos, degree days are divided by
100, distance is measured in log kilometers. Standard errors are computed with the
inverse Hessian.

I now explore whether individuals, when deciding both whether and where to migrate, take into
account not just the weather in their current location, but also that of their potential destinations. To
do so, I estimate a static discrete choice model of migration within Mexico, which is similar to the
dynamic model discussed in the following section. Specifically, I use a conditional logit framework
to estimate the preference parameters corresponding to the utility of an individual living in location
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(a) (b)

(c)

Figure 2: Climate transitions in Mexico under the Coupled Model Intercomparison Project Phase 6
(CMIP6) Shared Socioeconomic Pathway 2-4.5 (SSP2-4.5) through 2100 and smoothed using a
fourth-order polynomial in the year
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ℓ and then moving to location ℓ′:

𝑢(ℓ, ℓ′) = 𝛼1income + 𝛼21{ℓ′ ∈ U} + 𝛼31{ℓ′ = 𝜈ℓ}
+ 𝛼4𝐷𝐷26 + 𝛼5𝐷𝐷262 + 𝛼6𝐷𝐷14 + 𝛼7𝐷𝐷142

− 1{ℓ′ ≠ ℓ} × [𝛼8 + 𝛼9𝑑 (ℓ, ℓ′) + 𝛼101{children} + 𝛼11age] . (1)

Here, 𝐷𝐷26 represents last year’s number of degree days above 26°C; 𝐷𝐷14 last year’s number
of degree days below 14°C; U is the set of urban locations; 𝜈ℓ is an individual’s birth location;
and 𝑑 is the Euclidean distance metric. Table 5 presents the estimated parameters, all of which
are as expected. Individuals view higher incomes and living in the same area where they were
born as positive attributes in their location of residence. Moving is costly, and this cost increases
with distance, parenthood, and age. Moreover, the estimated parameters on the weather show that
individuals enjoy moderate amounts of both heat and cold, but dislike extreme levels. To put this
finding in perspective, note that the change in utility from a change in the number of degree days
above 26°C is:

𝜕𝑢

𝜕𝐷𝐷26
= 𝛼4 + 2𝛼5𝐷𝐷26.

This quantity is positive when 𝐷𝐷26 < − 𝛼4
2𝛼5

= 0.48, or when a location experiences fewer than 48
degree days above 26°C. The marginal impact of an additional degree day above 26°C below the
68th percentile of the observed data has a positive impact on welfare. This relation is even stronger
for degree days below 14°C: an additional degree day below the 77th percentile of the observed data
has a positive impact on welfare.

To provide further evidence of a forward-looking dynamic in expectations about future weather
on the decision to migrate, I modify the above static logit framework to additionally allow for
preferences about future temperature. I include an additional preference parameter for the average
of the daily temperature distribution over the next decade in the location chosen today. I present the
estimated parameters in Appendix C.2, Table C2. The results show a strongly significant preference
for future expected temperatures, suggesting that individuals form forward-looking expectations
about the climate when deciding where to live.

Given that heat and cold are enjoyed in moderation but disliked in abundance, it is important
to understand how the degree days of interest are projected to evolve in the future. Figure 2 plots
changes in the relevant weather outcomes across Mexico’s three primary Köppen climate zones and
time under a projected moderate warming scenario.24 Of particular note is the smooth increase in
the average temperature across time, albeit at a reduced rate in the climate projections than under

24Technically, there are four first-level climates in Mexico, with a handful of areas considered to have a polar climate.
As there are no municipalities in Mexico with a majority of land area contained in a polar climate, these areas are
subsumed into nearby climates.
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the historical observation. This increase in annual average temperatures maps strongly to increases
in tail-events. Figure 2c highlights that an increase of less than 2°C in average temperatures from
2020 through 2100 maps to a more than doubling in the number of annual degree days above 26°C.
Similarly, Figure 2b shows that this increase maps to a sharp decrease in the number of degree days
below 14°C in the dry and temperate climates in Mexico. The expected increase in the number of
degree days above 26°C and decrease in the number of degree days below 14°C work together to
show the potential welfare losses via amenities from climate change.

This section has documented a correlation between experienced, future, and past temperatures
with migration decisions. In the next section, I present the model framework, which allows me to
study the role of dynamics in shaping the value of migration in response to climate change.

3 Model

Overview

Individuals are modeled as making a sequence of 15 decisions about where to live. Each time they
make this choice, they take into account that the next time they will have the opportunity to move,
they will be a bit older, and that they will be making that choice from an origin of today’s choice.
This decision of where to live takes place once every three years, beginning at age 17 and ending at
61.25 These decisions are drawn from a choice set containing 27 distinct options within Mexico,
where each option is defined as a cluster of municipalities with similar climates and employment
opportunities

Individuals are modeled as varying in unobserved ways across two dimensions: migration costs
and expectations about the climate. First, some individuals never truly consider the option of moving
for a variety of reasons, including deep-rooted familial ties to their birth location, a strong fear of the
unknown, or any other highly heterogeneous reason that makes a person absolutely desire to remain
in the same location for their life. Other individuals actively consider the trade-offs of living in a
different location—be it higher incomes or improved amenities and the like—versus the monetary
and psychological costs of moving.

Second, individuals form beliefs about the climate in each of their potential choices in different
unobservable ways. In the spirit of the literature studying the sophisticated ways that consumers form
long-term expectations (e.g., Busse et al., 2013), I allow for individuals to form rich expectations
about a spatially heterogeneous climate that is changing heterogeneously throughout time. Other
work in economics has criticized the assumption that individuals are able to form correct expectations

25The vast majority of observed moves occur well before an individual is 61 years old — only a single individual
moves (one time) after this age in the MMP data used for estimation.

19



over complicated dynamics (e.g., Simon, 1955). For this reason, I additionally allow individuals to
form naive expectations about the future climate. I assume that these individuals see the weather in
the current period and predict, with certainty, that all future weather will be the same. I use the
model framework to estimate the unobserved portion of the population associated with each of the
belief processes and moving types, at the same time as the other model primitives.

After observing the current year’s weather and forming expectations of the implied future
climate, but prior to making the decision of where to move during this period, an idiosyncratic,
transitory, and location-specific preference shock affecting a combination of incomes and moving
costs is realized. This individual then compiles the available information and chooses to live in the
location that maximizes their lifetime welfare, as defined against their expectation process. If they
decide to move to a new location, they then pay an upfront cost that depends on their demographic
characteristics as well as the characteristics of their origin and destination locations. After making
this decision, agricultural season drought and flooding shocks affecting their income are realized.26
They then obtain three years’ worth of discounted flow utilities associated with their destination, and
they begin the next period with an updated set of state variables in their current location.

A Dynamic Model of Where to Live

𝑡 𝑡 + 1

Observe weather, demographic,
& preference shocks

Form heterogeneous
expectations of future weather

Decide where to live

Pay moving cost
(if needed)

Extreme rain
events are realized

Collect three years
of discounted utility

Figure 3: Within Period Timing

More formally, take some individual 𝑖 in some time period 𝑡 ∈ {1, . . . , 15}. At the start of
period 𝑡, 𝑖 begins in their previous-period choice location, ℓ, and observes their vector of state
variables, 𝜔, along with a vector of location-specific utility shocks, 𝜀. Given this framework, an
individual receives a flow utility associated with the decision to move to any particular location,
ℓ′, as given by 𝑢(ℓ, ℓ′, 𝜔, 𝑟) + 𝜀ℓ′ , where 𝑟 is a two-dimensional vector containing the drought and
flooding realizations. Individual 𝑖 is modeled as sequentially choosing locations ℓ′𝑡 , consistent with

26I model extreme rainfall events as occurring after the moving decision for two primary reasons. First, doing so
better accounts for higher levels of uncertainty surrounding localized precipitation than localized temperatures. Second,
conditional on the realized weather states, it is assumed to be uncorrelated across time. (This is a computational
requirement in that these events are therefore not elements of the state space).
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maximizing the following discounted sum of future flow utilities, given their time 𝑡 decision:27

max
𝑘∈C|𝑇−𝑡 |

{
𝑇−𝑡∑︁
𝑠=0

𝛿3𝑠
E

[
𝑢𝑠 (𝑘𝑠, 𝑘𝑠+1, 𝜔𝑠, 𝑟; 𝜃, 𝜏) + 𝜀𝑘,𝑠 |𝜔, 𝜏

]}
.

When making this decision, 𝑖 is assumed to be fully aware of their current state, as given by 𝜔𝜏,
and the current-period vector of idiosyncratic shocks. However, future realizations of these values
are unknown from a time 𝑡 perspective, as are the within-period rainfall shocks. Therefore, 𝑖 uses
their knowledge of the distribution over which these variables are realized when deciding where to
live today. Mild regularity conditions on this joint distribution, along with an assumption of the
separability of the deterministic flow utility values from the stochastic utility shocks, allow for a
translation from the above sequential representation of the modeled decision to that of a Bellman
equation. Specifically, I can reformulate the time 𝑡 < 𝑇 decision as:28

𝑉𝑡 (ℓ, 𝜔; 𝜃, 𝜏) = max
𝑘

{
E𝑅 [𝑢(ℓ, 𝑘, 𝜔, 𝑟; 𝜃, 𝜏)] + 𝜀𝑡𝑘 + 𝛿3

EΩ,𝜀 |𝜏 [𝑉𝑡+1(𝑘, 𝜔′; 𝜃, 𝜏) |𝜔]
}
.

The time 𝑇 value function, representing the sum of expected current flow utility and a discounted
retirement value can be written as:

𝑉𝑇 (ℓ, 𝜔; 𝜃, 𝜏) = max
𝑘

{
E𝑅 [𝑢(ℓ, 𝑘, 𝜔, 𝑟; 𝜃, 𝜏)] + 𝜀𝑡𝑘 +

𝛿3

1 − 𝛿
E𝑅,Ω|𝜏 [𝑢(𝑘, 𝑘, 𝜔′, 𝑟′; 𝜃, 𝜏) |𝜔]

}
,

where the final term of the above equation represents a retirement value associated with living
indefinitely in location 𝑘 , without the ability of further moves. Assuming that the state no longer
evolves after an individual’s final decision allows me to use a recursive strategy to fully solve the
model, as in Gowrisankaran et al. (2024a).

Formulating the individual decision in terms of a Bellman equation highlights the dynamic
interplays present in such a model. Of particular note, each period an individual faces a high number
of temporal trade-offs between current and future utilities, including an individual’s awareness of
future shocks which may unexpectedly change the future flow utilities associated with any decision
made today. These shocks enter through both the idiosyncratic draws and future weather realizations
throughout Mexico.

27I calibrate the annual discount rate, 𝛿, to 0.95.
28E𝑅 is an expectation about extreme rainfall events, while EΩ, 𝜀 is an expectation about the joint state variable and

utility shock distribution. E, with no subscript, is an expectation about the joint distribution of all three sources of
stochasticity.
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Components of Flow Utilities

Flow utilities associated with living in any particular location ℓ include three components: income,
temperature as an amenity, and level shifters from both living in one’s location of birth and living in
an urban location. Specifically, flow utility of an individual deciding to live in ℓ′ is modeled as:

𝑢̄(ℓ′, 𝜔, 𝑟; 𝜃) = 𝜃1inc(ℓ′, 𝜔, 𝑟)
+ 𝜃2𝐷𝐷26(ℓ′, 𝜔) + 𝜃3𝐷𝐷26(ℓ′, 𝜔)2 + 𝜃4𝐷𝐷14(ℓ′, 𝜔) + 𝜃5𝐷𝐷14(ℓ′, 𝜔)2

+ 𝜃61{ℓ′ = 𝜈ℓ} + 𝜃71{ℓ′ ∈ U}. (2)

This parameterization is given for a single year. However, since each model period is three years
long, an individual’s period flow utility is instead given by the present discounted sum of the annual
flow utility over three years. Specifically, in each period, an individual receives a flow payoff of∑2

𝑠=0 𝛿
𝑠𝑢̄(ℓ′, 𝜔).

Income

Income is parameterized as a function of one’s location, individual-specific state variables, and
the weather, specifically, a flexible function of growing degree days, drought, and flooding.29
Specifically,

inc(ℓ, 𝜔, 𝑟) = 𝑓 (ℓ, 𝜔, 𝑟),

where 𝑓 is assumed to be a known mapping to be estimated, and 𝑟 contains indicators for drought and
inundation. Within-period uncertainty over wages comes from uncertainty about extreme rainfall
outcomes, and future uncertainty comes from the transitory shocks, weather shocks, and extreme
rainfall outcomes.

Temperature as an Amenity

Weather is allowed to affect flow utility both indirectly through wages and directly as an amenity.
Amenity values are flexibly modeled as entering through extreme degree days, that is, through degree
days below 14° C and degree days above 26° C. These values were chosen for two primary reasons.
First, almost all the locations in the choice set have historically experienced nonzero levels of these
statistics.30 Second, as shown in Figure 1, at these thresholds, a nonlinearity in the reduced-form
probability of migration are present. The specification presented in Equation 2 remains agnostic
towards the sign and magnitude of the linear and quadratic terms for both extreme heat and cold.

29This parameterization is discussed in Section 4.
3022 of 27 locations have experienced nonzero degree days above 26°C, while 26 have experienced nonzero degree

days below 14°C.
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In particular, it allows for a bliss-level of both where utility is increasing until this point and then
decreasing after it.

Flow Utility Shifters

To appropriately account for the high proportion of the population who either never leaves their
location of birth or who leaves and subsequently returns, I allow for a level shifter of period utility
from living in an individual’s location of birth (Kennan and Walker, 2011). Further, to account for
differences in the populations living in urban and rural locations that are not explainable by income
differentials, I also allow for a utility shifter from living in an urban location.

Moving Costs

Given the relative infrequency of moves seen in data, it is important to accurately capture the costs
associated with a given move. I model moving costs as depending on both observed and unobserved
sources of individual, origin, and destination characteristics. This cost is paid upfront in the first
year of a model period that an individual decided to move. I parameterize it as follows:

𝑐(ℓ, ℓ′, 𝜔; 𝜃, 𝜏) = 𝛾1(𝜏) + 𝛾2𝑑 (ℓ, ℓ′) + 𝛾31{𝑘𝜔 ≥ 1} + 𝛾4age𝜔, (3)

where one source of unobserved heterogeneity, fixed within individual, enters through 𝛾1(𝜏). 𝑑

represents the Euclidean distance metric, 𝑘𝜔 the number of children, and age𝜔 the current period
time-step.

I allow for two unobserved permanent moving-cost types of individuals. The first type comprises
individuals who consider the trade-offs associated with moving each period. These individuals
are used to estimate the magnitude of 𝛾1. The other type is composed of individuals who do not
actively consider the option to move in any period; their 𝛾1 is prohibitively high. Allowing for this
source of unobserved heterogeneity is standard in the literature (Kennan and Walker, 2011; Lessem,
2018; Oswald, 2019), particularly, because past work has generally found that large masses of the
population have very high psychological costs associated with moving (Koşar et al., 2022).

Observed individual heterogeneity enters through level-shifters in the cost function. Specifically,
the moving cost can differ for individuals as they progress through their lifetime by allowing this
cost to depend on their age. The moving cost also is allowed to be different once an individual has
their first child. Heterogeneity in costs across space are modeled through different moving costs
based on the distance from an individual’s current location to their destination.
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A Model of Heterogenous Climates in Mexico

The climate is generally defined as a high-dimensional distribution linking physical systems, such as
oceans and the atmosphere (e.g., Hsiang and Kopp, 2018). Weather, itself a high-dimensional object,
is just a realization of this distribution at a particular time and place. Computational feasibility
requires that I take a summary statistic approach to modeling climate dynamics.31 I model the mean
of the daily temperature distribution and the level of agricultural-season precipitation as following
a multivariate Gaussian distribution, with the mean and variance estimated using data from the
previous 30 years, from the perspective of year 𝑦. That is,(

temp
prec

)
∼ N(𝜇𝑦, Σ𝑦), (4)

where temp and prec are both three-dimensional vectors containing the relevant realizations across
the three level-one Köppen climates in Mexico. Figure 4a plots the level-one Köppen climate zones
in Mexico, with blue representing the “dry,” teal the “temperate,” and red the “warm” climates.
As discussed in Section 4, individuals, in part, choose among locations defined against level-two
climates, which are nested within the level-one climates. Figure 4b plots these throughout space.
Appendix A.3 provides a detailed discussion of this classification system and how it is used in this
paper.

The model allows for two different belief formation processes, and as discussed in Section 4, the
mass of the population associated with each is estimated along with the other model primitives. The
first process is one of naivety. Individuals aligned with this framework observe the weather each
period and assume that all future weather will be drawn from a degenerate distribution at this point.
In particular, I only assume that these individuals are aware of the realized weather in the current
period for all locations in their choice set.

The second process is one of fully-informed expectations. More specifically, individuals who
form expectations under this process understand the functional form of 𝜇𝑦 and Σ𝑦, as given in 4,
where:

𝜇
𝑦
𝑤 = 𝛼

𝑦
𝑤 + 𝛼

𝑦

𝑤1𝜇
𝑦−1
𝑤 + 𝛼

𝑦

𝑤2𝑦,

and 𝑤 represents the level-one average temperature or agricultural-season precipitation. I model
fully-informed individuals as forming their understanding of 𝛼𝑦 and Σ𝑦 based on realized weather
over the previous 30 years, as is generally accepted as the length of a “climate.”

31The framework I develop here is quite general. In particular, suppose that you care about how individuals make
choices over variation in some high-dimensional statistic 𝑊ℓ . Further, suppose that the choice set can be portrayed in a
nested framework, and that the nest of ℓ is 𝑁 (ℓ). I break the curse of dimensionality by (i) identifying a set of moments
𝑊̃𝑁 (ℓ ) and (ii) formulating a set of mappings 𝑓ℓ such that 𝑊ℓ = 𝑓ℓ (𝑊̃𝑁 (ℓ ) ) + 𝜀ℓ . 𝑓 is exogenous to the choice problem,
and I therefore assume that individuals track 𝑊̃𝑁 (ℓ ) and use 𝑓 to map back to the variation of interest.
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(a) Level-One Köppen Climate Zones (b) Level-Two Köppen Climate Zones

Figure 4: Köppen Climates in Mexico

Although computational tractability requires that I only track summary statistics of the climate
system, past work has found that local weather impacts outcomes in a nonlinear fashion (Schlenker
and Roberts, 2009; Aragón et al., 2021; Miller et al., 2021). To appropriately account for this
fact in the dynamic model, conceptually, I allow for heterogeneous climate distributions for each
element of the choice set, where the particular climate distribution is determined by the relevant
level-one weather realizations.32 I assume that, on average, the individuals who form fully-informed
expectations about the climate system are aware of these distributions and that they use the relevant
realized level-one climate temperature to pin down the daily temperature distribution for a particular
location. They use the expected daily distribution to integrate out any necessary degree day
calculation.

Operationally, I assume that the fully-informed use location-specific mappings from the level-one
climate mean temperature into the expected number of degree days in a location. Mathematically,
they understand that the expected number of a particular type of degree day (𝐷𝐷) is given by:

𝐷𝐷ℓ = 1{𝜆𝐷ℓ + 𝜆𝐷1ℓtemp𝐶 (ℓ) > 0} ×
[
𝜆𝐷ℓ + 𝜆𝐷1ℓtemp𝐶 (ℓ)

]
, (5)

where 𝐶 (ℓ) represents the level-one climate for location ℓ, and temp is the realized mean of the
location’s daily temperature distribution.

Precipitation levels are generally of first-order concern in agriculture (Deschênes and Greenstone,
2007; Seo and Mendelsohn, 2008; Dell et al., 2014); however, their impact on outcomes has proven

32For example, both “dry warm dry” and “dry warm temperate” are different level-two climates (and therefore define
different locations in the choice set) that share a level-one climate of “dry”.
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elusive to capture empirically. This difficulty is especially true when precipitation is aggregated to
large spatial areas. To account for this issue, I instead model that individuals use a mapping from
level-one climate agricultural season precipitation levels to location-specific probabilities of drought
and flooding. Specifically, they form expectations based on the following:

prob(𝑅ℓ) = Φ

(
𝜂𝑅ℓ + 𝜂𝑅1 P𝐶 (ℓ) + 𝜂𝑅2 temp𝐶 (ℓ)

)
, (6)

where R is either drought or flooding, and again, 𝐶 (ℓ) represents the level-one climate for location ℓ,
P the agricultural-season precipitation level, and temp the mean of the daily temperature distribution.
Appendix B.1 discusses these mappings and their estimation in greater detail.

N(𝜇𝑡 , Σ𝑡)

Dry

Temperature

{𝐷𝐷26ℓ}ℓ∈Dry {𝐷𝐷14ℓ}ℓ∈Dry {𝐺𝐷𝐷ℓ}ℓ∈Dry •

{Drought Riskℓ}ℓ∈Dry {Flood Riskℓ}ℓ∈Dry

Precipitation

Temperate

Temperature Precipitation

Warm

Temperature Precipitation

Figure 5: Graphical Representation of the Climate Model

Figure 5 provides a graphical representation of the climate model used by the individuals
forming fully-informed expectations. Starting at the top, these individuals understand that the
weather is drawn from a Gaussian distribution characterized by the mean and variance described
earlier in this section. A draw from this distribution gives the mean daily temperature and level of
agricultural-season precipitation for each of the three primary Köppen climates: dry, temperate, and
warm. These individuals then use these values to form expectations about the number of degree days
and the probability of drought and flooding in each location. They form these expectations based on
Equations 5 and 6, respectively. These equations are estimated in the first stage, which allows for
a rich set of different weather variables to influence migration decisions. In particular, I use six
different weather variables to characterize an individual’s state. After combining these variables
with the estimated mappings, I am able to use variation from 141 different weather variables in the
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dynamic model.

4 Identification & Estimation

Identification

I briefly discuss the intuition behind the identifying variation for each of the model primitives; a
more formal argument is presented in Appendix B.3. Simply put, the income and temperature flow
utility parameters are identified from two sources of variation in the life history data. Conditional
on making a move, the first source of identifying variation compares differences between the given
quality in the observed choice location and that in all other options. For example, part of the
income parameter comes directly from comparisons of the expected income in an individual’s choice
location to that across the menu of choices an individual faced in the year of their move. The second
source of variation identifying these parameters instead comes from comparisons in average rates
of migration across differences in these qualities, conditional on all other state variables. More
specifically, this source of identification holds constant all state variables (and other preference
parameters) except that which one is seeking to identify and compares how changes in this variable
influence the expected migration rate within each state variable grouping.

The variation identifying the preference for living in one’s home location also comes from two
facets of the data. The first of these compares the aggregate migration rate away from an individual’s
home location to the migration rate away from all other locations. The second compares the duration
of stay when an individual is and is not in their birth location. Similar comparisons are made when
identifying the preference for living in urban locations.

Identification of the mixing probability for the different moving types comes from a comparison
of the migration rate for individuals on their second or later move to those who would be making
their first move. Intuitively, the first-time migration rate contains a mixture of information about
both moving types, while the migration rate for later moves only contains information about the
movers. The estimation routine exploits this difference, conditional on all other state variables,
to back out the mass of the population associated with either type. The moving cost intercept
is identified from the migration rate across the population, conditional on all state variables and
other parameters, most importantly, on the mixing probabilities. Thus, the intercept’s value is
identified from comparisons of migration rates within first and later moves. The distance parameter
is identified from comparisons of the distance traveled for each move in the data, the different
cost borne by parents comes from migration rate comparisons across individuals with and without
children, and the age parameter comes from migration rate comparisons across the age distribution.

Finally, one part of the differential mass of each climate belief type is identified from the
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variation, caused by climate change, in the future relative values of living in the different locations
in an individual’s choice set. To build intuition, imagine that an individual can only choose between
two locations, 𝑎 and 𝑏. Further, suppose that today 𝑎 is preferable to 𝑏, but that 𝑎’s future desirability
is decreasing at a faster rate than that of 𝑏. A fully-informed individual would choose 𝑏 with a higher
probability than a naive individual. Another source of identifying variation of the belief masses
comes instead from comparisons of the distribution of migration decisions over time. In particular,
as presented in Figure 2, the rate of warming across the three climate zones in Mexico has varied
quite strongly throughout the sample period. Individuals deciding where to live in the early years of
the sample, therefore, faced a climate which was changing at a much slower rate than the climate
faced by individuals in the latter years of the sample. The differences in the rate of warming across
time cause otherwise identical individuals to have different choice probabilities, but only if they are
fully-informed on the climate system. The estimation framework, discussed later in this section,
makes comparisons such as the two discussed here, across the model framework and the migration
decisions observed in the MMP data, to identify the mass associated with either belief process.

As a final point of emphasis, much of the model’s ability to identify point estimates associated
with the preference parameters rests on normalizations imposed on the stochastic shocks. In
particular, I normalize the scale of this distribution to one, which allows for separate identification
for each preference parameter.33

Choice Set

The choice set is defined as the product of the level-two Köppen climate zones in locations where
individuals from the MMP data were seen to reside and an indicator for urban status, all defined
at the municipality level. Figure 4 plots the location of each level- one and -two Köppen climate
group, with the level-one climates shaded salmon for the “dry” climates, green for the “temperate”
climates, and blue for the “warm” climates.

The second element of the choice set is the classification as either rural or urban. I use the
Mexican government’s metro zone classification to make this distinction. Specifically, a municipality
is considered “urban” if there is a metro zone within its boundaries, and “rural” otherwise. Each
element of the choice set is therefore a cluster of municipalities, defined such that each contains all
municipalities of the same level-two climate grouping and “urban” status.34

33An alternative strategy would be to normalize the marginal flow utility of income to one and instead estimate the
variance of the stochastic shocks. This identification would follow from comparisons of migration outcomes across
individuals with identical states who make different decisions.

34One climate group has no metro zones within any municipality in its borders; therefore, there are 27 different
locations in the choice set.
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Transition Probabilities

I estimate the state variable transition distribution in a first stage. The estimated distribution is used
in the second stage to integrate over the value of future states within each of the available choices.
For numerical tractability, I assume that occupation (in or out of agriculture), education level, and
one’s birth location are constant within individual. Appendix B provides evidence in support of
these restrictions. Except for one’s moving-belief type, the remaining state variables transition
across an individual’s lifetime.

Given the triennial structure imposed on the model timing, an individual’s age increases by 3
years each time step with probability one. If an individual has had a child before or during the
current period, then they do not transition out of the parenthood state; however, if they have not
had a child, then they may become a parent with probability 𝑝𝑐 (𝑎). This probability depends on a
second-order polynomial of their age and is estimated using a probit regression of the MMP data in
the first stage.

I compress each year into its decade, which transitions to the next element with probability
0.3. The decade is used to track the relevant climate distribution, as described in Section 3. The
model’s solution procedure, discussed later in this section, requires that the model be solved
through the year 2064. For all years beyond 2019, the parameters are estimated using data from the
CMIP6 business-as-usual climate scenario. Estimates of all first-stage transitions are provided in
Appendix B.2.

Wages

Expected wages are estimated in a first step, using external census survey data, as discussed in
Section 2. I assume that expected wages are of the following form:

inc(ℓ, 𝜔, 𝑟) =
∑︁
𝑎

∑︁
𝑒

𝛽𝑎,𝑒 + 𝛽ag𝑎𝑔(𝜔)

+
3∑︁

𝑐=1

[
𝛽𝐺𝐷𝐷,𝐶
𝑐 𝐺𝐷𝐷 (𝜔) + 𝛽𝐺𝐷𝐷2,𝐶

𝑐 𝐺𝐷𝐷 (𝜔)2 + 𝛽𝐷,𝐶
𝑐 𝐷 (𝑟) + 𝛽𝐼,𝐶𝑐 𝐼 (𝑟)

]
+

1∑︁
𝑎𝑔=0

[
𝛽
𝐺𝐷𝐷,𝐴𝑔
𝑎𝑔 𝐺𝐷𝐷 (𝜔) + 𝛽

𝐺𝐷𝐷2,𝐴𝑔
𝑎𝑔 𝐺𝐷𝐷 (𝜔)2 + 𝛽

𝐷,𝐴𝑔
𝑎𝑔 𝐷 (𝑟) + 𝛽

𝐼,𝐴𝑔
𝑎𝑔 𝐼 (𝑟)

]
+ 𝜉ℓ + 𝜂𝑦 (𝜔), (7)

where 𝑎 indexes age and 𝑒 education level, and 𝑎𝑔 is an indicator for whether an individual is
employed in agriculture. This functional form offers a large degree of flexibility, while still allowing
for a structural interpretation of the resulting parameter estimates. Each location has its own
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intercept, 𝜉ℓ. The age-education intercepts allow for a flexible return to experience and education,
which, given the year fixed effects 𝜂𝑦 (𝜔), accounts for potential biases arising from differences
across birth-cohorts. The remaining terms represent the differential impact across level-one climates
and agricultural employment of different measures of weather on wages. 𝐺𝐷𝐷 (𝜔), representing
agricultural-season growing degree days, enter into wages quadratically. 𝐷 is an indicator for
drought and 𝐼 for inundation (flooding), both measured during the agricultural growing season.
Appendix A.2 provides details on the estimated coefficients from Equation 7.

Estimation Framework

I estimate the model primitives using a nested full-solution routine within a pseudo-maximum
likelihood framework (Rust, 1987). I briefly discuss the format of this procedure here, and provide
more details in Appendix B. The likelihood is a mixture over the unobserved moving-belief types.
Specifically, for a given vector of the mass of unobserved types 𝜋𝜏 and a vector of structural
parameters 𝜃, the log-likelihood is the sum of the individual log-likelihoods, where each individual
likelihood integrates over the distribution of unobserved heterogeneity: the moving and belief types,
represented by 𝜏. Mathematically,

Λ(𝜃, 𝜋) =
∑︁
𝑖

log (E𝜏 [L𝑖 (𝜃; 𝜏)])

=
∑︁
𝑖

log

(∑︁
𝜏

𝜋𝜏 ·L𝑖 (𝜃; 𝜏)
)
. (8)

Given 𝜃 and 𝜋𝜏, Λ can be computed directly from the data and interpreted as being the log-likelihood
of observing the choices made in the MMP data, given the model structure. The assumption that 𝜀ℓ
follows a Type I extreme value distribution provides a closed form of L𝑖 (. ). To see this, I can first
define the alternative-specific value function

(
𝑉 𝑡 (ℓ, 𝑘, 𝜔; 𝜃, 𝜏)

)
as the value afforded to an individual

in state 𝜔 who currently lives in ℓ from choosing option 𝑘 , net of the current period stochastic shock.
Mathematically,

𝑉 𝑡 (ℓ, 𝑘, 𝜔; 𝜃, 𝜏) = E𝑅 [𝑢(ℓ, 𝑘, 𝜔, 𝑟; 𝜃, 𝜏)] + 𝛿3
EΩ,𝜀 |𝜏 [𝑉𝑡+1(𝑘, 𝜔′; 𝜃, 𝜏) |𝜔] . (9)

Conditional on the structural parameters and the unobserved type, the individual’s choice
problem can then be rewritten as:

max
𝑘

{
𝑉 𝑡 (ℓ, 𝑘, 𝜔; 𝜃, 𝜏) + 𝜀𝑘

}
.

Following McFadden (1973), rewriting the choice problem in this way allows one to write the
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model-generated choice probabilities as:

L𝑖𝑡 (𝜃; 𝜏) =
exp

(
𝑉 𝑡 (ℓ𝑖𝑡 , ℓ𝑖𝑡+1, 𝜔; 𝜃, 𝜏)

)
∑

j∈C exp
(
𝑉 𝑡 (ℓ𝑖𝑡 ,j, 𝜔; 𝜃, 𝜏)

) .
This formulation of the choice probabilities makes clear that one need only obtain the set of
alternative-specific value functions at each time step and location in the state space.

The distributional assumption on the preference shocks additionally assists with this endeavor.
In particular, Equation 9 can be rewritten as:

𝑉 𝑡 (ℓ, 𝑘, 𝜔; 𝜃, 𝜏) = E𝑅 [𝑢(ℓ, 𝑘, 𝜔, 𝑟; 𝜃, 𝜏)] + 𝛿3
EΩ,𝜀 |𝜏 [𝑉𝑡+1(𝑘, 𝜔′; 𝜃, 𝜏) |𝜔]

= E𝑅 [𝑢(ℓ, 𝑘, 𝜔, 𝑟; 𝜃, 𝜏)] + 𝛿3
∫

max
𝑗

{
𝑉 𝑡+1(𝑘, 𝑗 , 𝜔′; 𝜃, 𝜏) + 𝜀 𝑗

}
𝑑𝐹𝜔′,𝜀 |𝜔,𝜏

= E𝑅 [𝑢(ℓ, 𝑘, 𝜔, 𝑟; 𝜃, 𝜏)] + 𝛿3
∫

𝛾 + log ©­«
∑︁
𝑗∈C

exp
(
𝑉 𝑡+1(𝑘, 𝑗 , 𝜔′; 𝜃, 𝜏)

)ª®¬ 𝑑𝐹𝜔′ |𝜔,𝜏,

where the second line uses the definition of the alternative-specific value function to replace the value
of beginning the next period in location 𝑘 with state 𝜔′ with the maximum alternative-specific value,
inclusive of each preference shock, across the various choices available.35 The third line exploits the
iid nature of the Type I extreme value preference draws to break apart the joint expectation into a
sequential expectation over the state variable transitions and the preference shocks. It then uses the
properties of the Type I extreme value distribution to rewrite the expectation of this maximum in a
closed form.36

To obtain the set of alternative-specific value functions given a vector of primitives, I employ a
backward-recursion strategy (Wolpin, 1984). Briefly, given some vector of preference parameters,
one can start at the terminal period and calculate the set of alternative-specific values associated
with making any decision from the perspective of an individual at every spot in the state space. The
time T values can then be used to calculate the time T-1 alternative-specific value functions. One
can work backward in this fashion until the full set of alternative-specific value functions has been
recovered. With these in hand, one can directly calculate Equation 8 and maximize its value over the
structural parameters and mixing probabilities to obtain consistent estimates of their values (Rust,
1988).

35Conditional on one’s unobserved type, the integral on the second line is thirty-five dimensional. This comes from
twenty-seven location shocks, and the state transition for: one’s parental status, the year, and the six weather state
variables. I don’t include one’s birth location, their education, and their sector of employment in this calculation, as
computational tractability requires that those are assumed constant within individual.

36The resulting integral is now eight dimensional.
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Substitution Patterns

As a minor point of emphasis, this framework additionally relaxes the independence of irrelevant
alternatives (IIA) assumption that is ubiquitous in much of the spatial literature to allow for a
more accurate representation of the substitution patterns that a potential migrant in Mexico faces
when they make the decision of where and whether to move (Chipman, 1960; de Dios Ortuzar,
1983; Brownstone and Train, 1998). To see why making this change is important in the context of
migration and climate change, I provide the following stylized example. Suppose that individuals
choose from three locations in the country: dry, temperate, and warm. Further, suppose that in
relative terms, the temperate location is becoming more desirable with time, while the dry and
warm locations are becoming less desirable with time. Moreover, suppose that the desirability of
the warm location is declining faster than that of the dry location. Notice that the increase in the
value of living in the temperate location would cause a higher proportion of the population to decide
to live there. IIA substitution patterns would require that this increase is proportionately driven by
the warm and dry locations. In reality, we may expect that relatively more people would move to the
temperate location from the warm location than the dry location. The dynamic framework that I
employ allows for such substitution patterns to occur.

5 Results

Model Estimates

The estimated preference parameters are provided in Table 6. Similar to past work using U.S.
data (Bishop, 2008; Kennan and Walker, 2011), I estimate a strong preference for living in one’s
birthplace. The estimate implies that individuals are indifferent between spending one year away
from their hometown with an income roughly twice that received in their birth location. Even with
such strong attachments to this location, I still find that a large portion of the population actively
considers moving each period — 63%. Similarly, I estimate a negative preference for living in an
urban area. This preference is reminiscent of a compensating differential associated with living and
working in an urban center (Rosen, 1986). Specifically, the average individual requires a roughly
24% higher income to be indifferent between living in an urban versus rural area.

I estimate that the behavior of more than half of the population (67%) is more consistent with a
model of full-information than one of naivety.37 I am unable, however, to reject the null hypothesis

37I assume a homogenous discount rate across the population; which allows me to identify heterogeneity in
climate-beliefs. That said, the estimate of the mass of climate-naive is locally not sensitive to changes in the discount
rate.
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Table 6: Structural Parameter Estimates

Description Parameter Coefficient Standard Error

Flow utility

Income 𝜃1 0.006 (0.0007)
100 Degree days above 26°C 𝜃2 0.034 (0.005)
100 Degree days above 26°C squared 𝜃3 -0.015 (0.002)
100 Degree days below 14°C 𝜃4 0.020 (0.002)
100 Degree days below 14°C squared 𝜃5 -0.003 (0.0003)
Living in an urban location 𝜃6 -0.041 (0.003)
Living in location of birth 𝜃7 0.183 (0.002)

Moving costs

Fixed migration cost, for movers 𝛾1 2.599 (0.073)
Distance of move 𝛾2 0.140 (0.011)
Cost shifter: parenthood 𝛾3 0.072 (0.022)
Cost shifter: age 𝛾4 0.172 (0.006)

Unobserved heterogeneity

Mass of movers 𝜋𝑚 0.628 (0.013)
Mass of fully-informed expectations 𝜋𝑏 0.673 (0.206)

Note: Income is measured in annual hourly 2010 pesos. Distance is measured in log kilometers. The
likelihood contains 90,578 individual-year observations from 11,194 individuals. Asymptotic
standard errors are calculated using the score of the likelihood.

of a unit-mass of fully-informed individuals.38 I find that individuals dislike extreme amounts of
both heat and cold, as measured by degree days above 26°C and below 14°C. To put these preference
estimates into perspective, one can study how flow utilities change with respect to changes in the
number of degree days. In particular, the marginal flow utility of an additional degree day above 26°
C is above zero when the number of degree days is below ∼120. Similarly, the marginal impact on
flow utilities of an additional degree day below 14° C is positive when the number of degree days
is below ∼260. The quadratic preference specification over degree days allows for a “bliss-point”
interpretation, with this value defined as the peak of the relevant quadratic.

To put these values into perspective, 17% of the individual histories used in estimation experience
annual degree days above 26°C which are above their bliss-point, and 28% above that for degree
days below 14°C. If these same individuals experienced the 2050 business-as-usual climate, 49% of

38I have also estimated two different versions of the model where I assume that the climate-naive expect that future
weather draws are drawn from a either a stationary or non-stationary degenerate distribution at the average weather over
the last thirty years. The estimated preference parameters and the mass of movers are statistically indistinguishable
from those presented here. I estimate a smaller mass of the climate-naive (8% and 12% vs 33%), but with much more
precision (a standard error of 0.019 and 0.014).
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them would face a number of annual degree days above 26°C to the right of their bliss point and
less than 1% would face annual degree days below 14°C to the right of the same. I explore the
consequences of these outcomes in the next section.

Similar to past work in developed countries (Kennan and Walker, 2011; Oswald, 2019; Ransom,
2022), I estimate a high migration cost that is increasing in age and in the distance between the
destination and origin. I also find that these costs increase once one becomes a parent. One way
to understand the magnitude of the moving cost is by comparing the marginal utility of income
to the intercept of the moving cost equation to translate from utils to dollars.39 This exercise
reveals a fixed migration cost of $99,000, or roughly 10 years of income.40 This calculation is the
full cost, inclusive of all psychological and monetary costs associated with a forced move in an
arbitrary period to an arbitrary location.41 Since migration is an endogenous decision, individuals
often decide to move because they received a high-preference shock (represented by 𝜀) in their
chosen destination. I incorporate this fact into the moving cost calculation by then subtracting off
the expected maximum of 𝑁 − 1 iid Type I extreme value draws.42 This step reduces the fixed
moving cost to a moving subsidy of $50,000.43 Kennan and Walker (2011) provide another way
to contextualize the moving costs by defining them as the difference in expected flow utilities
between the origin and the destination, inclusive of moving costs, net of the expected difference
in preference shocks, given the decision made. This definition incorporates the idea that when an
individual is willing to leave a relatively desirable location for one that is less so, their unobserved
preference shock in the destination must have been sufficiently high, compared to that in their origin.
Calculating moving costs in this way provides for an average subsidy of $50,000. Given the strong
preference for living in one’s birth location, the calculated moving cost back home is much higher —
a cost of $29,000. These calculations highlight the endogenous nature of migration, and the high
value associated with allowing individuals to choose the timing and destination of their migration
decisions in the context of dynamic adaptation to climate change. I discuss these calculations in
more detail in Appendix B.4.

The above calculations highlight the highly heterogeneous nature of migration. In particular,
model observables are not, by themselves, able to fully capture the incentives associated with
moving in any given period to any given location. However, combining these observables with

39Appendix B.7 discusses the mapping I use to translate from utils to dollars.
40Here, I define the fixed cost simply by the moving intercept. The level shifters, children and age, will, in practice,

increase the magnitude of this fixed cost.
41This value is still informative for the discussion of migration as adaptation to climate change: this is the cost of

forcing an individual to adapt via migration without giving them the ability to choose the timing nor the location of said
adaptation.

42𝑁 , here, represents the number of elements in the choice set.
43I am defining a moving subsidy as a negative moving cost. Given that the stochastic shocks are modeled as entering

through incomes, another way to view this would be through the lens of a transitory (3-year-long) positive shock to
incomes in their destination.
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the underlying model structure, including the distributional assumptions on the preference shocks,
allows one to obtain a more accurate picture of the importance placed on each component of the
migration decision process. The model uses the variation described in Section 4, in conjunction
with the normalized preference shocks, to provide insights into the relevance of climate on migration
decisions, through both incomes and amenities. In the next section, I provide evidence that the
estimated model, along with the imposed structure, does a good job of predicting migration decisions
within Mexico.

Model Fit

Table 7: Model Fit

Migration Rate

Model Data

Overall 5.4% 4.7%

Children
Yes 5.2% 3.4%
No 5.4% 7.2%

Agricultural Worker
Yes 4.5% 3.5%
No 5.8% 5.3%

Years of Education
0-5 5.0% 4.2%
6-11 5.3% 3.8%
12+ 6.1% 7.5%

Note: For each category, I calculate the average
migration predicted by 100 model simulations of
the life trajectories of the individual-year
observations used in estimation. The data
migration rates are calculated as the average
migration rate for each category.

To understand how well my estimated model fits the observed data, I use it to simulate each
of the decisions of the individuals used in its estimation. Table 7 shows the average migration
rates across a series of demographics in the data and across 100 simulations of the model. The
model generally slightly overestimates migration rates across the population. This occurs primarily
because of the retrospective nature of the MMP data. In particular, I only reproduce exactly those
decisions in the data, and as such, I do not predict decisions made at points in life later than those
observed (the age at which an individual is surveyed). This leads to an overprediction of migration
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(a) (b)

Figure 6: (a) plots the average migration rates in the data against those predicted by the model, broken down by
education levels. Low, mid, and high education refers to less than 6 years, 6–11 years, and 12 or more years of education,
respectively. (b) plots the average migration rates in the data against those predicted by the model, broken down by
agricultural employment.

from a higher mass of young individuals than the estimation routine accounts for. Appendix C.1
replicates Table 7 when instead simulating the entire life history of each individual. This alternative
specification leads to a much closer matching of the demographic moments.

Figure 6a plots model predicted versus observed migration rates, broken apart by age and
education levels. The dashed curve represents the model-predicted migration rate across ages and
education levels; the solid curve represents that from the estimation data. The model does a good job
of capturing trends over time and education levels. Perhaps reassuringly, the model only recognizes
differences across levels of education through differences in the wage process, and even still, it is
able to correctly capture the initial gap in migration rates by young individuals with high levels of
education compared to those with lower levels.44 It also correctly predicts both the convergence of
migration rates across education levels as individuals age and the eventual uptick in migration rates
at the end of the life cycle.

Figure 6b tells a similar story as Figure 6a, this time looking at agricultural employment. As in
the setup for education, the model only incorporates an individual’s sector of employment through
the wage process. It is still able to correctly match many of the differential life-cycle trends across
these groups. In particular, the model matches the initial uptick in migration at the beginning of the
life cycle for agricultural workers, but not for non-agricultural workers. It also correctly predicts the
eventual convergence in rates across the two groups and the increase in rates for non-agricultural
workers at the end of the life cycle. Appendix C.1 plots the same figures but from simulating
decisions across the entire life cycle for all individuals, rather than just those decisions made and
observed in the data.

44Some of these individuals are likely moving to college. The model captures this via a higher wage opportunity in
all locations.
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6 Counterfactuals

I use the estimated model to simulate forward the life histories of all Census-enumerated Mexican
males through 2080 under a variety of counterfactual scenarios. To do so, I combine data from
the 2020 Census count and the MMP life history data. In particular, I use Census data on the
number of individuals in each age bin residing in a municipality assigned to each location in 2020,
along with the location-specific education and agricultural employment distributions to create an
individual-level cross-section. Through 2038, I incorporate new cohorts of young men into the
simulation, where the number and locations of new entrants comes from the age distribution for
children in the 2020 census. Appendix E discusses this approach, and the data used, in more detail.

I use the counterfactual simulations to understand the effectiveness of migration in limiting
future climate damages. In particular, I design a series of counterfactual exercises which modify the
climate system, moving costs, and the ability to migrate. I use these to understand both how the
value of the ability to migrate varies with the degree of warming as well as how migration directly
affects expected climate damages.

The baseline scenario, a business-as-usual climate change projection, is modeled directly through
an extension to the framework used in estimation. More specifically, the full solution procedure used
in estimation requires solving the model through 2064, to account for the terminal period of those
who turn 17 in 2018. Throughout the estimation framework, I assume that the individuals who form
fully-informed expectations of the future climate use the previous thirty years of weather data to form
their expectations. I use historical data through 2020, and use daily projected weather data from the
SSP2-4.5 climate projections for the remaining years. This helps maintain an internally-consistent
framework upon which to study counterfactual scenarios.

To understand the difference between migration decisions under business-as-usual and a world
without climate change, I use historical weather data from 1950–1979 to construct a stationary
climate system with limited climate change. For this scenario, I model that the climate system
is governed by a Gaussian distribution with a constant mean and variance, both of which are
set to the observed values from 1950–1979. As in estimation, in both the business-as-usual and
stationary climate scenarios, I assume that there are both movers and non-movers and those who
form fully-informed expectations and those who form naive expectations about future weather draws,
with the mass of each of these groups set to the estimated proportions from the MMP data.

Business-as-Usual Warming Increases the Value of Migration

The first set of simulations shed light on how climate change will affect the value that different
individuals place on the ability to choose whether or not to migrate throughout their lifetime. To
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Figure 7: Value of Migration over Time
Note: Plotted is the average value of migration for 17–19-year-olds over time, with the percentage change in this value
from 2020 to 2038. (a) represents the percentage change in this value under the business-as-usual climate scenario from
2020 through 2038. (b) represents the percent difference in this value between the business-as-usual and stationary
climate scenarios in 2020. (c) represents the same as (b), but in 2038. All curves are smoothed with a third-order
polynomial. The results are averaged over 100 simulations.

study this question, I use the estimated model to simulate the choices of each Census-enumerated
male for the remainder of their lives. When doing so, I track their model-predicted welfare, when
they can and cannot choose to move domestically as well as when the climate is characterized by the
business-as-usual scenario and the counterfactual scenario of limited warming. Mathematically, the
average value of migration under scenario 𝑠, in the base year (2020), is given by:

1
𝑛(𝑦)

∑︁
𝑖(𝑦)

{
𝑉̃ (ℓ𝑖, 𝜔𝑖 |𝑠) − 𝑉̃ (ℓ𝑖, 𝜔𝑖 |𝑠, 𝛾1 = ∞)

}
,

where 𝑉̃ (ℓ𝑖, 𝜔𝑖 |𝑠) is the observed value of individual 𝑖’s lifetime value under scenario 𝑠, appropriately
scaled to 2024 dollars, and 𝑦 indexes the year.

Figure 7 plots the results. I find that migration is valuable: the average 17–19-year-old in
2020 values the ability to move at approximately 2 years of annual income. The entering cohorts
consistently have values of migration that are greater than those of the last. Panel (a) shows that by
2038, this quantity increases by 70% relative to its 2020 value. Much of both the initial level and
the steep change is driven by welfare damages from increased warming in the near future. Panel (b)
highlights this finding: projected warming increases the lifetime value of the ability to migrate by
just over four times, relative to the stationary historical climate scenario. Panel (c) combines the

38



analyses in panels (a) and (b) to explore how the value of migration driven by climate change changes
over time. I find a fairly flat representation for the value of migration in a no-warming scenario in
the near future.45 This result, combined with the acceleration in values under the business-as-usual
scenario, are represented in panel (c). Projected warming stands to increase the lifetime value of
migration by over seven times relative to a world without climate change

The first two columns of Table 8 decompose this finding across a variety of spatial and
demographic dimensions. I find that the value of migration, for the average 17–19-year-old in
2020 across Mexico is $21,139, or roughly 2 years of income, under the business-as-usual climate
scenario — about four times higher than that under the limited climate change scenario. The results
in these two columns additionally highlight the progressive nature of migration as an adapting tool
for climate damages: migration is around 60% more valuable to those with the lowest relative
levels of education than those with the highest.46 The same can be said for individuals employed in
agriculture, relative to those employed in other sectors.

The upper panel of Table 8 presents the spatial heterogeneity value throughout Mexico. I find
that individuals living in the temperate parts of the country face a relatively stable value of migration
across the different climate scenarios, while those in the warm regions face an almost 15-fold increase
in the value of migration under the business-as-usual scenario relative to the no-climate-change
scenario. Decomposing these values across the demographic distribution of the population shows
that low-skilled and agricultural workers stand to gain the most from the ability to move under
a business-as-usual pathway, while the gains from migration are spread more evenly across the
population under the stationary climate scenario.

I note that dynamic considerations are vital to analyzing the value of migration at limiting the
damages of climate change. To see why this is true, I compare the estimated value of migration
under a business-as-usual climate scenario with and without dynamics. Specifically, I use the static
logit framework presented in Equation 1 to simulate the decisions of the male population of Mexico
through 2080. I estimate a lifetime value of domestic migration that is two orders of magnitude
lower than that given by the dynamic framework: $520. This difference arises from the fact that the
dynamic model is able to capture the long-term benefits from migration accrued over one’s lifetime,
whereas the static model only captures the value from migration for a single year when an individual

45This, mainly, is a model-driven result, as the only non-stationary state distribution is the joint climate distribution.
46The differential wage premium of urban employment for those with high education is well established in the

literature (c.f., Gould, 2007). I am forced to abstract from such effects for computational reasons. In particular, including
these interactions, as well as interactions with education and the weather, led to precision issues in the first stage due to
insufficient residual variation left to estimate the additional parameters of the wage equation. This means that I am also
abstracting from any potential complementarities where migration becomes differentially valuable across the education
distribution because of climate change, conditional on one’s sector of employment and location. That is, the differences
in the presented value of migration because of climate change, across the education groups, are driven by past sorting
into different climates and differences in the rate of agricultural employment across the education distribution.

39



Table 8: Heterogenous Values of Migration

Business-as-Usual Climate

New workers Children born Limited
today today Climate Change

Average 21,139 36,026 5,023

Climate
Dry 15,059 20,909 4,323
Temperate 5,812 5,415 5,292
Warm 75,687 130,389 5,197

Agricultural Worker
Yes 35,699 62,206 4,998
No 19,210 31,959 5,026

Years of Education
0–5 31,285 54,802 5,148
6–11 24,719 42,469 5,049
12+ 19,304 32,458 5,007

Note: These are the average results of 100 simulations of the model. Values are for 17-19
year olds and are measured in 2024 dollars. The value of migration is defined as the
difference between average lifetime welfare for an individual who can migrate and one
who cannot. Business-as-usual refers to the SSP2-4.5 climate projections, limited climate
change refers to a climate system centered around 1950–1979 averages. Children born
today and new workers today refer to individuals who were less than 2-years-old and
between 17–19-years-old during the 2020 Census count, respectively.

is deciding whether or not to move.47

Stylized Framework to Incorporate Congestion Impacts on Wages

Given that migration is modeled in a partial equilibrium framework, the above analyses discount any
general equilibrium effects that may lead to decreases in wages in desirable locations. For example,
individuals are likely to be aware that local wages will respond to future changes in population. In
other words, the places that are desirable today will attract higher portions of the population in the
future, which will drive future wages down in these locations, making them less desirable today.
This mechanism would work to decrease the value of migration.

It is not computationally feasible to allow for these dynamics in their base form in the dynamic
model. I design a simple and stylized general equilibrium exercise to understand how serious of a

47Another way to see this is through the lower static-predicted rate of migration. As displayed in Figure C5, the
dynamic model predicts migration rates for young men in Mexico as being between 8% and 10% from 2020 through
2038. In comparison, the migration rate predicted by the static framework is between 3% and 5% over the same time
frame, as seen in Figure C6.
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concern this omission may be. To establish intuition, imagine a world in which individuals begin in
one of two locations, 𝑎 or 𝑏. For simplicity, suppose that individuals all agree that 𝑎 is the more
desirable location. However, individuals also understand that wages respond to the proportion of the
population that is in 𝑎. In particular, take some individual, 𝑖, who is deciding whether to move to 𝑎.
𝑖’s immediate reaction is that they would like to move to 𝑎; however, after pondering the decision,
they recognize that many other people will likely also move to 𝑎, which will drive wages down. They
are familiar with much of the literature on the topic and combine the expected change in populations
with Borjas (2003)’s estimated elasticity of wages to labor supply to update what they expect their
wages to be in location 𝑎: 𝑤′ < 𝑤. But then they recognize that everybody else is likely performing
the same set of calculations, and thus some fraction of the population will actually decide to stay in
𝑏. Consequently, wages in 𝑎 will not fall all the way to 𝑤′, but rather to 𝑤′′ > 𝑤′. This process can
be iterated on until 𝑤 (𝑘) ≈ 𝑤 (𝑘+1) .

Convergence of this framework is similar in spirit to the level-k reasoning theory used in
behavioral economics to explain why equilibrium theory fails to accurately predict outcomes in
many games (Camerer et al., 2004). In each iteration, some mass of the individuals who were
marginal to moving to a given location decide to instead either stay in their current location or
move to another location. If all of these marginal individuals decide to stay in their current location
and the set of marginal individuals is decreasing across iterations, then uniqueness of the resulting
equilibrium, with convergence defined against changes in population counts in each location across
iterations, is guaranteed. However, given that most individuals who decide to move are doing so not
only because of the specific destination but also because of the origin, uniqueness is not guaranteed.

More concretely, I simulate behavior under the baseline scenario and track the percentage change
in population levels in each of the locations from 2023 and 2038. I modify the wage equation to
respond to these changes using an elasticity of -0.3 (Borjas, 2003), linearly from 2023 through 2038.
This marks the end of the first iteration. In the second iteration, I resimulate behavior with the
updated wage equation. I again keep track of population changes to arrive at a further updated wage
equation to be used in the third iteration and so on. In practice, it does not take many iterations for
the algorithm to converge: by iteration 12, the maximum difference in relative population changes
across iterations is below 1%. The final column of Table C3 shows the updated values of migration
after accounting for congestion impacts.48 I find that the average option value across Mexico
decreases by around 10%. Appendix E.4 provides more details on this exercise.

48The maximum difference is less than 0.09% across locations between the 16th and 17th iterations.
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Figure 8: Migration and climate damages over time
Note: This figure plots model-predicted climate damages for 17–19-year-olds over time. The solid curve represents
damages in a world with migration; the dashed curve represents damages in a world without. The results are averaged
over 100 simulations.

Migration Limits Climate Damages

So far, I have found that warming in the near future will lead to a stark increase in the value that
individuals place on their ability to move domestically. I now ask how effective we should expect
migration to be in limiting overall climate damages. I use Figure 8 to study this question. The figure
plots average lifetime climate damages for the cohorts of 17–19-year-olds from 2020 through 2038.
Average expected climate damages are calculated as:

1
𝑛(𝑦)

∑︁
𝑖(𝑦)

{
𝑉̃ (ℓ𝑖, 𝜔𝑖 |no cc) − 𝑉̃ (ℓ𝑖, 𝜔𝑖 |BAU)

}
.

𝑉̃ (·|no cc) represents the lifetime welfare of an individual, in 2024 dollars, when they are in a
world with limited climate change, and 𝑉̃ (·|BAU) represents the same for an individual in a world
governed by the SSP2-4.5 climate projections. The solid curve shows the trajectory of these damages
through the 2038 cohort in the baseline scenario with estimated migration frictions. The dashed
curve shows the same trajectory in the world where migration is completely restricted.

I find that climate damages are increasing over time, both under the status quo and under a world
without migration. Taken together with the relative importance of amenities and wages in explaining
the differential values of migration, this outcome is driven by the stark shift in the distribution of
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extreme heat events across Mexico depicted in Figure 2. Moreover, the figure shows that it is not
only climate damages that are increasing with time, but also the gap between damages in a world
with migration and one without: average climate damages experienced by a 17–19 year old in 2020
are 28% lower if they have the ability to migrate within Mexico. For an individual who was less than
2 years old in 2020, this migration-induced reduction in climate damages is projected to increase to
33%.

Table 9: Migration Reduces Expected Climate Damages

% ↓ in Damages from Migration

Age in 2020: 17–19-years-old <2-years-old

Average 28% 33%

Climate
Dry 27% 27%
Temperate 3% 1%
Warm 35% 40%

Agricultural Worker
Yes 32% 37%
No 28% 32%

Years of Education
0–5 32% 36%
6–11 30% 34%
12+ 28% 32%

Note: These are the average results of 100 simulations of the model.
Damages are measured in lifetime values. The percentage decrease in
damages from migration is the average difference in climate damages
from a world without migration to one with migration.

The first column of Table 9 directly measures the importance of migration in limiting climate
damages for young men in 2020. The spatial heterogeneity in the decrease in damages from migration
speaks directly to the mechanism through which migration limits climate damages. Specifically,
individuals living in the temperate regions of the country face a 4% reduction in their expected
lifetime climate damages due to their ability to migrate. This projection is in stark contrast to the
35% reduction in damages faced by those living in the warmest regions of the country who are able
to move to temperate regions to escape damages.

The second column studies the same reduction in climate damages from the ability to migrate,
but for the 2038 cohort. Comparing the results in the first two columns, I find that the decrease in
damages from migration is expected to decline for the individuals living in temperate regions of the
country, whereas it is expected to increase very slightly for those in the dry regions and to increase

43



by more than 4 percentage points for those in the warm regions of the country. The differences in
the change in the reduction in damages from migration across the country comes from two facts.
First, even the temperate regions of the country are expected to face increased climate damages in
the future. Second, the other locations in an individual’s choice set are also worsening, with the dry
regions warming even faster than the temperate ones. Thus, the value that an individual who already
lives in a temperate location will place on their ability to move within Mexico will attenuate over
time with the degree of warming.

As an important caveat, I have assumed that the only way that one is able to adapt to climate
change is through migration. Practically, this means that the estimated valuations of migration in
limiting the damages of climate change will be biased upwards because some individuals who the
model predicts to migrate would instead prefer to engage in in-situ forms of adaptation. That said,
since I abstract away from these other forms of adapting behavior, I am underestimating the overall
value of adaptation, generally defined, in limiting the damages of climate change. In this paper,
I study the value of migration, a dynamic form of adaptation, at limiting the damages of climate
change. Future work could study the role and limits of in-situ adaptation, as well as static forms
of adaptation, to climate change. One way to do this would be to slightly modify the framework I
design for this paper through allowing for a joint decision to migrate and switch occupations or to
invest in additional education.

The Value of Climate Information to the Climate-Naive

The previous two sections have highlighted that migration will be an increasingly valuable form of
adaptation to climate change. That said, given the dynamic interplays present in the decision to
move, its value and effectiveness as an adapting strategy will depend on our understanding of future
warming. Here, I use the estimated model to uncover the importance of understanding the climate
system when deciding whether to dynamically adapt to climate change. I then present evidence that
policy can be used to dampen the welfare losses due to naivety on the climate transition across the
population.49

In the first two columns of Table 10, I highlight the value to the climate-naive of becoming
fully-informed on the climate system through the change in their expected lifetime climate damages.
In 2020, I find that obtaining and using a full understanding of the climate system would lead to
an expected decrease in lifetime climate damages of just over 2%. This corresponds to a dollar
value of $1,099 over one’s lifetime (column 3). By 2038, the expected reduction in lifetime climate
damages is projected to fall to just over 1%. As Figure 2a highlights, this is because of the flattening
of the rate of warming around 2040 under the business-as-usual climate scenario, which causes a

49In Appendix B.8, I derive a closed form, recursive, representation of the alternative-specific value function for the
climate-naive individuals, which allows me to calculate the true welfare for the climate-naive.
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Table 10: Value of Climate Information to the Climate-Naive

% ↓ in Climate Damages Value of Climate Information in 2020

New workers Children born Dollar % ↓ from $1,100 % ↓ from $1,100
today today Value Dynamic Subsidy Static Subsidy

Average 2.2% 1.2% 1,099 18.7% 7.8%

Climate
Dry 0.4% 0.6% 544 29.7% 12.8%
Temperate 1.3% 2.2% 298 49.0% 21.4%
Warm 3.2% 1.2% 4,300 10.4% 4.1%

Agricultural Worker
Yes 2.9% 1.0% 2,019 13.7% 5.3%
No 2.1% 1.3% 976 20.2% 8.6%

Years of Education
0–5 2.7% 1.1% 1,700 13.7% 6.0%
6–11 2.5% 1.2% 1,313 18.8% 7.0%
12+ 2.1% 1.3% 987 19.2% 8.5%

Note: These are the average results of 100 simulations of the model. Values are for 17-19 year olds, measured in 2024 dollars.
The percent decrease in climate damages (as in Table 9) represents that for the climate-naive individuals from becoming
fully-informed. The value of climate information refers to the difference in average lifetime welfare between the population of
fully-informed and climate-naive individuals, in 2020. The decrease in the value of climate information from a dynamic and
static subsidy refers to the decrease of the dollar value of climate information from a one-time $1,100 subsidy to be used at the
first time an individual moves and a take-it-or-leave-it offer, both in 2020.

narrowing in the gap between the decisions made by the climate-naive and the fully-informed, as
seen in Figure C5.

Where do the increased climate damages due to naivety on the climate system come from?
Compared to the decisions one would make with full information, I find that the climate-naive
are over three-times as likely to mistakenly choose to stay in their current location as they are
to mistakenly decide to move. Moreover, across the simulated time-frame, mistakenly deciding
to remain in one’s location induces average losses to lifetime welfare of $9,006. The average
lifetime-losses from making a mistake during a move are less than half of this: $3,796. Taken
together, this implies that subsidizing migration has the potential to be one way of reducing the
heightened expected climate damages borne by the climate-naive.

The fourth and fifth columns of Table 10 highlight the effectiveness of subsidizing migration
at reducing the welfare losses of the climate naive. I present the results from two potential policy
options. The first is a dynamic subsidy which can be used at the first time an individual decides
to move. The second is a static policy which is only available in the policy year. Both policies
correspond to a subsidy roughly worth the average lifetime value to the climate naive of becoming
fully-informed. Importantly, I highlight that it is possible that subsidizing migration could actually
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Figure 9: Dynamic and Static Policy
Note: 𝑚 is the cutoff for inframarginal movers, 𝑠 is the size of the subsidy, 𝑤 is the size of the option
value for future moving opportunities with a subsidy of 𝑠. The shaded area is the portion of the
population inframarginal to any policy.

increase the welfare losses to the climate-naive if their losses outweighed their gains from their
policy-induced moves. I find that this is not the case. Moreover, I find that dynamic policies are
substantially more valuable than one-time offers.

The difference between the welfare implications of the two policy options is driven by the
dynamic policy’s influence on the value that each individual places on the ability to move at a
reduced cost in the future. This increases the relative value of the dynamic policy through two
channels. The first is that the dynamic policy will affect the welfare of everyone who considers the
option of migration. Notice that even those who would not move in the policy year, with or without
the policy, will receive positive value from the knowledge that they will have the option to move at
a reduced cost in the future. The second is that the dynamic policy will generate a strictly higher
value-per-mover than a static policy. In other words, the dynamic policy positively selects from the
mass of the population marginal to moving under a static policy.

Figure 9 provides intuition for why dynamically-available policies will positively select from the
set of individuals marginal to a static reduction in moving costs. I plot a conceptual distribution
taken across the population. 𝑚, here, represents the expected cutoff of the maximum over the
preference shocks, in the absence of policy, for which individuals would decide to move. Individuals
to the left of 𝑚 are inframarginal to the policy and therefore receive a transfer of 𝑠 from any offered
subsidy. The static subsidy of 𝑠 shifts the portion of the population who decide to move to the right,
as represented by 𝑚′. 𝑚′ is determined by an individual’s indifference condition: this represents
the individual who receives $0 from moving with the subsidy, that is, they receive a welfare-loss
of exactly 𝑠 from moving without the policy. 𝑤 represents the option value of future moves with
a subsidy of 𝑠. Notice that under the dynamic policy, individuals would not move today if their
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value of moving was below 𝑤, as that is their value of withholding the subsidy into the future. The
average value of the different subsidies to movers is the weighted average of these values across the
population that decides to move, with the weights given by the mass of the population with that
particular value for the policy. The fact that the dynamic policy has a positive option value is what
drives the positive selection results I find.

Climate change will cause two simultaneous changes to the curve in Figure 9. First, 𝑚 and 𝑚′

will both shift to the right as the migration rate will increase due to warming. Second, 𝑤 will shift
closer to 𝑚 and away from 𝑚′, as represented by the increasing option value of future moves at a
reduced cost. These results underscore that as the climate becomes progressively hostile, individuals
will increasingly value the option to choose when to invoke the decision to move at a reduced cost.
Figure C8 highlights this finding across time, from warming.

7 Conclusion

This paper takes a new approach to understanding the value of dynamic forms of adaptation to
climate change, in this case, through migration. I find that incorporating the large and heterogeneous
costs of such forms of dynamic adaptation are of first order importance when seeking to understand
the role that adaptation will play in mitigating the damages of climate change. Even with such
large migration cost estimates, I find that the value individuals place on the option to migrate is
both substantial and increasing in the degree of warming. Put another way, as time progresses,
individuals will be increasingly exposed to extreme heat from seemingly small shifts in average
temperature. This fact will lead many to seek out less-affected areas, even within their own country.
This process of increased migration in response to warming is apparent through the estimated option
value that individuals place on the ability to migrate.

Although migration can be a valuable tool in the fight to adapt to climate change, I emphasize
that its dynamic nature implies that correct expectations of the climate system may be of first
order concern. To see this, I exploit variation in rates of warming across Mexico to identify the
proportions of the population forming fully-informed and naive expectations about the climate
transition. I estimate that a non-negligible fraction of the population makes decisions consistent
with a framework of naive expectations. This finding is supported by results from an external survey
asking participants in Mexico about their understanding of climate change. The climate-naive stand
to face large improvements to their welfare from becoming fully-informed. In particular, I find that
their value of migration would increase by 5%, and their expected climate damages would decrease
by 2% from such information. The average masks a high degree of heterogeneity: those living in
the warm regions of the country and those who have been historically marginalized stand to gain the
most from becoming better informed.

I find that much of the value of correct information on the climate system comes from correcting
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otherwise lower predicted rates of migration by the climate-naive. As such, one way to close this gap
is to subsidize migration. I find that one-time reductions to moving costs at the level of the internality,
taken when an individual first decides to move, reduce the loss of welfare to the climate-naive by
19%, whereas take-it-or-leave-it offers reduce the same by 8%. Given these large differences, I use
the estimated model to highlight the selection effects that are caused by the different policies. In
particular, dynamic reductions to moving costs generate option value from the ability to use them in
the future, which reduces the contemporaneous set of individuals marginal to the policy, and in turn
increases the average value of the policy.

The analysis presented in this paper uses data from Mexico and studies how individuals living in
Mexico are predicted to migrate domestically in response to climate change. While the results are
likely applicable to other settings, a few important caveats are in order that future work can seek to
address. First, I study only domestic migration within Mexico as an adapting strategy to climate
change. As mentioned throughout the paper, this is because past work has highlighted that domestic
migration is historically the most common form of climate-migration (IPCC, 2022). That said, past
work has found that individuals also migrate internationally in response to warming (Feng et al.,
2010; Missirian and Schlenker, 2017; Jessoe et al., 2018). Future work should continue to address
the role of international migration as an adapting strategy to climate change; such analyses could
study the role of border policies (Benveniste et al., 2020), the substitutability of international and
domestic migration, and the different factors that drive an individual to decide to migrate either
domestically or internationally as a form of adaptation to climate change.

Second, I combine microdata with my modeling framework to identify two sources of unobserved
heterogeneity that are important limiting factors behind the decision to migrate as adaptation to
climate change: persistent never-movers and biases in climate beliefs. I use these sources of
heterogeneity to highlight the welfare consequences associated with their behavior. Understanding
the determinants of why some individuals never choose to migrate and why others are uninformed
on the climate system can help policymakers target policy across the population. One way of doing
so would be to study the value of climate information in a setting with a higher degree of variation
in the rates of warming across space to identify continuous measures of beliefs about the climate
system. Moreover, in such a setting future work may be able to identify variation in the mass of each
belief type across demographics, personal experience with extreme weather, and other observable
characteristics.

Finally, I model budget constraints as entering in through one’s moving cost. In counterfactuals,
I therefore assume that the prevalence of such constraints will be similar in the future to what we
have observed in the past. That said, there is evidence that warming can either increase or decrease
the migration propensity through its effect on liquidity constraints (e.g., Cattaneo and Peri, 2016).
An important avenue for future work will therefore be to study the role of liquidity constraints on
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the overall cost of migration as adaptation to climate change.
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A Data

Table A1: Data Sources

Data Source Purpose Years

Mexican Migration Project (MMP) Estimation (Life-histories) 1950–2019
ENIGH, ENE surveys Estimation (Income) 1984–2019
Livneh et al. (2015) Estimation (Weather) 1930–1979
Daymet Estimation (Weather) 1980–2019
NASA NEX-GDDP CMIP6 Estimation/Simulations (Weather) 2020–2100
Mexican full-count Census Simulations 2020

Table A1 presents the data sources used in this paper.

A.1 Mexican Migration Project

The MMP is a joint data collection effort between Princeton University and Universidad de
Guadalajara that “aims to gather and maintain high-quality data on the characteristics and behavior
of documented and undocumented Mexican migrants to the United States”50. To accomplish this,
the MMP has sent surveyors out to between three and five pre-selected communities each Winter
since 1982, where data are collected from a random sample of 200 households.

During these interviews, the surveyors collect various types of information from each household
head. These include demographic and health information about both the head of the household and
their spouse, detailed information on the first and last domestic and international migratory trips by
both of them as well as any other migrants in their household, and a variety of different economic
variables for these individuals, such as their current (time of the survey) wage. Importantly, each
household head also provides the surveyor with their life history at the yearly level and that of their
spouse. In this history, they are asked to provide information about where they have lived and
their primary occupation during every year of their life. The publicly available dataset containing
these variables censors some of the location data to preserve the confidentiality of those individuals
surveyed;51 however, I was provided access to the censoring algorithm and a crosswalk necessary for
de-censoring the data so that I am able to verify the exact municipality of residence for the majority
of individuals surveyed. This is the primary section of the survey that I exploit in this project.

The following restrictions are made in selecting the sample used to estimate the structural model:

• Birth date not before 1950
50Quote is taken from the MMP’s home webpage, accessed 03/20/23
511.9% of person-year observations were either censored or left blank due to issues with recall on the part of the

surveyed individual.
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• Birth location within Mexico

• After the de-censoring algorithm is employed, known birth location

• After the de-censoring and imputation algorithms are employed52, municipality of residence
for each year of the life history is known and is in Mexico.

• No years with missing state variables

The first condition is for two reasons. First, I use the previous 30 years’ of weather realizations
when estimating state transitions. Restricting births to not before 1950 implies that I begin modeling
choices in 1967, which means that I require weather data from 1930 (I discretize years into decades
which transition stochastically). Moreover, it helps ensure that the estimated wage data are not used
to predict too far out sample. Further, I require that each individual be born in Mexico and have a
known municipality of birth because past work has shown that individuals strongly prefer to live in
their home location (e.g., Kennan and Walker, 2011). The remaining requirements are enforced
to guarantee a complete panel for each individual in the data, which is necessary to estimate the
dynamic model.

The life history data has an annual frequency; however, the model is instead designed with a
triennial structure. To convert the data to this frequency, I employ the following algorithm, given
individual 𝑖 at time-step 𝑡:

• If there are no moves during the three-year period, 𝑖’s starting location at time 𝑡 + 1 is the same
as their location at time 𝑡. Assign state variables according to the first year in this period.53

• If there is a move during the three-year period, 𝑖’s starting location at time 𝑡 + 1 is the location
of their first move during this period. Assign state variables according to the year of this move.

52Even after employing the de-censoring algorithm, there are still some individuals (834) who live in an unknown
municipality at some point in their life. I drop any of these individuals who live in an unknown municipality and an
unknown state. For the remaining individuals, given knowledge of the state, but not municipality, of residence, I use the
following algorithm to impute their location in those years:

– If they live in a state that they do not again live in with a known municipality, drop them from the data

– If they live in a state where they either have previously lived or will live in the future, and at that time there is
a single known municipality of residence, assign the years that they reside in that state, but with an unknown
municipality, as the same known municipality in that state.

– If they live in a state where they either have previously lived or will live in the future, and also have lived/will live
in multiple known municipalities in that state, assign the years that they reside in that state, but with an unknown
municipality, with the municipality that they live in the year nearest the year with missing information.

This algorithm removes 517 individuals from the panel.
53For example, the first time period covers ages 17-20. If 𝑖 does not move during these years, then their state variables

for this period are those when they are 17.
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Figure A1: Density of Number of Moves in the MMP Data, For Migrants

A.2 Wages

Given a lack of robust wage data in the MMP life histories, I use Census surveys to estimate a
wage equation. More specifically, I use the 1984, 1989, 1992, 1994, 1996, 1998, 2000, 2002, 2004,
and 2006 versions of La Encusta Nacional de Ingresos y Gastos de los Hogares (ENIGH), and the
quarterly 2008 through 2019 versions of La Encuesta Nacional de Ocupación y Empleo (ENOE). I
use these data to create a repeated cross section of wages for each of the above years. When forming
this cross section, I restrict the sample to males, who are the head of their household between the
ages of 17 and 61, with positive hours worked and wages, who are not self-employed or working for
a cooperative, and who live in one of the municipalities visited by an individual in the MMP data. To
adjust for outliers, I remove the top and bottom 5% of the wage data within each location-year. This
leaves me with 3,626,618 observations. Table A2 presents the estimated coefficients corresponding
to the weather impacts on wages.

A.3 Köppen Climates

The Köppen climate classification system is a widely used system for classifying locations in space
by their differing local climates (Köppen, 1884). This system is global in scale, and as such is not
able to capture local idiosyncrasies in climate. For this reason, El Instituto de Geografı́a and La
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Table A2: Wage Equation Estimates, Weather

Hourly Income

Ag worker 0.74
(3.55)

Growing Degree Days 7.5***
(2.8)

Growing Degree Days2 -0.95**
(0.44)

Drought -0.38*
(0.20)

Inundation -0.036
(0.310)

Ag worker × GDD -3.0
(2.8)

Ag worker × GDD2 0.58
(0.52)

Ag worker × Drought 0.38
(0.25)

Ag worker × Inundation -0.44*
(0.24)

Temperate × GDD -5.1
(3.8)

Warm × GDD -6.4
(14.6)

Temperate × GDD2 0.75
(0.75)

Warm × GDD2 0.87
(2.17)

Temperate × Drought 0.77***
(0.22)

Warm × Drought 0.66**
(0.33)

Temperate × Inundation -0.56*
(0.32)

Warm × Inundation -0.13
(0.36)

Num.Obs. 3626618
R2 0.231
FE: Location, Year X
Dep. Var. Mean 27.06

Note: Estimates correspond to the coefficients
from Equation 7 in the main text. Wages are
measured in 2010 hourly pesos. Standard errors,
in parentheses, are clustered at the municipality
level. *p < 0.1; **p < 0.05; ***p < 0.01
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Universidad Nacional Autónoma de México have developed a more detailed classification system
for Mexico (Garcı́a, 2004). This system is based on the Köppen system, but is more detailed with
respect to the local nuances of the climates within Mexico. I use this updated classification system
in this paper, and I discuss the specifics of it here.

I assign each municipality their climate class based on the classification which contains the most
area of the municipality. The classification system is broken into four main groups: warm (cálido),
dry (seco), temperate (templado), and cold (frı́o). None of the municipalities have a majority of
their area in the cold region, so I do not discuss this group further. Each of the three remaining
groups is further broken down into their subgroup: warm into warm warm and warm semi-warm,
dry into dry very dry, dry dry, and dry semi-dry, temperate into temperate semi-warm, temperate
temperate and temperate semi-cold. The classification is then broken down one more time: warm
and temperate groups into those with humid and subhumid climates, and the dry group into very
warm, warm, semi-warm with warm winter, semi-warm with cool winter, temperate with warm
summer, temperate with cool and long summer and semi-cold.

There are no municipalities in the warm semi-warm humid class, so there are three warm
climates: warm warm humid, warm warm subhumid, and warm semi-warm subhumid.

I combine temperate semicold humid (one municipality) and temperate semicold subhumid
(nine municipalities) into a single class, temperate semi-cold. There are therefore five temperate
climates: temperate semi-warm humid, temperate semi-warm subhumid, temperate temperate
humid, temperate temperate subhumid, and temperate semi-cold.

I combine all dry climates based on their second grouping with “warm” and “temperate” third
level classifications (there are no temperate semi-cold municipalities). This results in six dry
climates: dry warm semi-dry, dry temperate semi-dry, dry warm dry, dry temperate dry, dry warm
very dry, and dry temperate very dry.

Figure 4, in the main text, plots the resulting climates throughout Mexico.

A.4 Metropolitan Zones

La Secretarı́a de Desarrollo Social, El Consejo Nacional de Población, and El Instituto Nacional de
Estadı́stica y Geografı́a have developed a classification system for municipalities in Mexico based on
their population size and economic activity into metropolitan zones (las zonas metropolitanas). This
system is explictly designed to determine which parts of the country are “urban”. I use their 2004
definitions, based on 2000–2010 populations, to classify each municipality as either urban, if there
is a metropolitan zone in the municipality, and rural, otherwise. There are 63 such metropolitan
zones, covering 1,021 municipalities.
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B Methods & Empirical Implementation

B.1 Climate & Weather

Equation 3 is estimated at the level-one climate by year level, separately for each decade using data
from the past 30 years. Equations 5 and 6 are estimated at the location by year level using the historical
data in estimation and the business-as-usual simulations in counterfactuals.54 Table B1 provides
summary statistics for Equation 6, showing the average fixed effect (𝛾𝑅

ℓ
), and the shared precipitation

and temperature coefficients.55 Table B2 presents goodness-of-fit statistics for Equations 5 and 6.

Table B1: Rainfall Probability Estimates

Drought Flood

Precipitation -1.34 2.31
Temperature 0.11 -0.15

Climate (Average FE)
Dry -2.54 1.29
Temperate -2.09 0.52
Warm -2.21 0.68

Note: Estimates correspond to the coefficients from
the probit regressions of level-one climate variables
on drought and flood risk, described in Section 3.
The bottom panel reflects the average fixed effect
across climates for the particular rainfall event.

Table B2: Weather Mapping Fit

Growing Degree Days Degree Days above 26 Degree Days below 14 Drought Flood

R2: Full R2: No FE Pseudo R2

0.985 0.647 0.239 0.239 0.041 0.101
Note: Growing degree days are for maize, and refer to degree days with a lower kink at 8°C and an upper kink at
32°C. Drought and flood refer to an SPEI below (above) 1.5. I use the McFadden pseudo R2. All statistics refer to
the mappings presented in the main text: Equation 5 and Equation 6.

54It is not computationally feasible to allow for individuals to use the last 30 years of data when forming expectations
of these mappings. This is because that would require an extra dimension (year) in an array which already has hit
the curse of dimensionality. Perhaps a way to incorporate the simulated future climate into this mapping would be to
include the simulated data in estimation of these mappings when estimating the model - I have not done so, and this has
other drawbacks.

55It is important to note that drought and flood are defined using the SPEI, which accounts for differences in potential
and realized evapotranspiration. This means that these events are defined relative to the local climate, rather than in
absolute terms.
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Table B3: First Stage Parenthood Transitions

1{New Child}
Intercept -1.785***

(0.018)
Time Step 0.377***

(0.011)
Time Step Squared -0.0373***

(0.0014)

Num.Obs. 82256
RMSE 0.32

Notes: New Child is a binary variable
representing whether an individual becomes a
new parent in the following period. That is,
they have no children in the current period and
at least one child in the following. Estimation
is done using a probit regression on the
subsample of non-parents in the MMP data.
∗∗∗𝑝 < 0.01.

B.2 Transitions

I employ a two-stage estimation routine, where in the first stage I estimate the distribution of state
variable transitions, which I feed into the second stage nested-full solution maximum likelihood
algorithm. I discuss here the estimates from the first stage.

An individual’s state is described by the following set:
𝜈ℓ, 𝑒𝑑𝑢𝑐, 𝑎𝑔︸         ︷︷         ︸

Constant

, 𝑎𝑔𝑒︸︷︷︸
Deterministic

Trans.

, 𝑑𝑒𝑐, 𝑘, 𝒘︸    ︷︷    ︸
Stochastic

Trans.

, ℓ︸︷︷︸
Endogenous

, 𝜏︸︷︷︸
Unobserved

, 𝜀


Where 𝜈ℓ is an individual’s birth location, 𝑒𝑑𝑢𝑐 is either low, medium, or high representing less

than 6, between 6 and 12, and at least 12 years of education, respectively, 𝑎𝑔 is 1 if the individual
works in agriculture at least 25% of their observed life history and 0 otherwise. 𝑑𝑒𝑐 transitions to
the next decade with probability 0.3 and remains the same with probability 0.7. 𝑎𝑔𝑒 transitions to
the next time-step with probability 1. 𝜏 represents the moving-belief type, ℓ the current location,
and 𝜀 the vector of location-individual-time-specific Type I extreme value draws.

The weather transitions are discussed in Section 3 of the main text.
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B.3 Identification of Preference Parameters

Section 4 of the main text provides examples of the sources of variation in the estimation data
which identify the preference parameter estimates. Here, I highlight two sources of variation, whose
existence can be verified using reduced form statistics. In particular, the first column of Table B5
highlights differences in average migration rates across differences in wages, age, experienced
weather, whether an individual has migrated in the past, and whether they were born in their current
location. All of these differences are strongly significant conditional on the others and differences
across rural and urban locations. The second column of Table B5 highlights the relationship between
the length of stay for migrants, measured in years, and the same set of variables. This set of
comparisons highlights a source of identification for the preference for living in an urban location,
conditional on all other variables, including expected wages.

B.4 Moving Costs

The estimated structural model allows for a calculation of frictions associated with any particular
move seen in the estimation data. Section 5 discusses three different ways of contextualizing such
estimates. The moving cost for an individual observed moving from location ℓ to location ℓ′, with
current-period state variables given by 𝜔56 (Δ̄(ℓ, ℓ′, 𝜔)), the moving cost, is defined as the difference
in flow utilities, inclusive of the estimated moving cost, given by 3, net of the expected difference in
the preference shock, conditional on making choice ℓ′. Mathematically:

Δ̄(ℓ, ℓ′, 𝜔) = 𝑢(ℓ, ℓ, 𝜔) − 𝑢(ℓ, ℓ′, 𝜔) − E[𝜀ℓ′ − 𝜀ℓ |𝑐 = ℓ′, ℓ, 𝜔] . (10)

Borrowing from the conditional choice probability literature (Hotz and Miller, 1993), Kennan and
Walker (2011) show that Equation 10 can be rewritten as something equivalent to:

Δ̄(ℓ, ℓ′, 𝜔) = 𝑙𝑜𝑔(𝑝(ℓ, ℓ, 𝜔))
1 − 𝑝(ℓ, ℓ, 𝜔) +

𝛿3
∫ [

log

( 27∑︁
𝑘=1

exp(𝑣̄𝑡+1(ℓ′, 𝑘, 𝜔′))
)
− log

( 27∑︁
𝑘=1

exp(𝑣̄𝑡+1(ℓ, 𝑘, 𝜔′))
)]

𝑑𝐹𝜔′ |𝜔,𝜏 . (11)

This is the object I discuss in Section 5 of the main text.

56Note, here I include an individual’s time-step, 𝑡 in 𝜔. This is different from the definition given the main text.
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B.5 Estimation

I discuss here a few technical details regarding estimation of the dynamic model. The first of these is
the discretization procedure used. As discussed in Appendix B.2, the only continuous state variable
in the model is the set of weather states. I discretize each of the continuous weather variables into 3
bins, where the lower and upper limits are determined such that practically all of the observed data
lie within them. The dry and temperate climates each have a temperature bin-width of 1 degree
Celsius, while the warm climate has a bin-width of 0.5 degrees Celsius.57 Similarly, the dry climate
has an agricultural-season bin-width of 0.1 meters, while the temperate and warm climates have a
bin-width of 0.2 meters.

I use multilinear interpolation to interpolate the value function outside/inside of these bins. In
particular, for a given weather state, 𝒘, I find the nearest bin above and below 𝑤𝑖 for each 𝑖 in 1
through 6.58 I then form the set of all combinations of these grid points, there are 64 (26) such
combinations. I then calculate the Euclidean distance from 𝒘 to each combination, and set the
relevant value, at 𝒘, as the inverse-distance weighted average of the value at each combination.

The above discretization leads to a state space with roughly 4.6 billion different points. The
model solution explicitly solves the Bellman at each of these points. The MLE framework requires
that the model be solved thousands of times.59 The large and non-stationary state space is necessary
to study two intrinsically dynamic objects: migration and climate change. In estimation, I exploit
separability across many large swathes of the state space to parallelize the computation across
a cluster of 9 high performance GPU nodes on the University of Arizona’s High Performance
Computing cluster. I also exploit sparsity of many sections of the transition distribution to further
reduce the computational burden. Moreover, I derive a closed form representation of the model
solution which avoids numerical integration over the preference shocks. Using NVIDIA P100
GPUs, each likelihood evaluation takes around three minutes, with the likelihood maximized using
a highly-effective black-box solver (Montoison et al., 2020).

B.6 Standard Errors

To obtain standard errors on the structural parameter estimates, I calculate central differences around
the optimal parameter vector. To be clear, I calculate standard errors using the following algorithm:60

1. Perturb 𝜃∗
𝑘

above and below by |𝜃∗
𝑘
|
√
𝜖

2. Calculate log(𝑝𝑟𝑜𝑏𝑖 |𝜃𝑝𝑘 ) for each perturbation direction (p), 𝑘 , and 𝑖

57There is much less variation in mean temperature in the warm climate than in the other two.
58If 𝑤𝑖 is above (below) the upper (lower) limit, then I use the upper (lower) limit for both of the points described.
59For example, the primary version of the model required 2,639 evaluations of the solution procedure.
60𝜖 , here, represents machine precision for 16-bit floats
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3. Calculate 𝜕𝑙𝑜𝑔(𝑝𝑟𝑜𝑏𝑖)
𝜕𝜃

using finite central differences

4. Create individual contributions to the score as 𝜕𝑙𝑜𝑔(𝑝𝑟𝑜𝑏𝑖)
𝜕𝜃

𝜕𝑙𝑜𝑔(𝑝𝑟𝑜𝑏𝑖)
𝜕𝜃

′

5. Calculate information matrix as I= 1
𝑛

∑𝑛
𝑖=1

𝜕𝑙𝑜𝑔(𝑝𝑟𝑜𝑏𝑖)
𝜕𝜃

𝜕𝑙𝑜𝑔(𝑝𝑟𝑜𝑏𝑖)
𝜕𝜃

′

6. Invert I

7. Divide I−1 by the number of people (n)

8. The square root of the resulting diagonal converges to the vector of standard errors

The resulting standard errors are clustered at the individual level, due to the finite-mixture
structure imposed on the problem.

B.7 Translation to Dollars

I discuss here the mapping I use to translate values, as measured in utils, into dollars. Mathematically,
suppose that we have some difference in value functions, 𝑢, which is measured in utils. Notice that
the estimated marginal utility of income, 𝜃1 from Equation 2, is measured in utils per 2010 peso per
hour per year. Then normalizing 𝑢 by 𝜃1 delivers 𝑢1, which is measured in 2010 pesos per hour
per year. I multiply this by the average number of hours worked by an individual living in Mexico
in 2010: 2244.61 This gives the value of 𝑢2, which is measured in 2010 pesos. I bring 𝑢2 to 2010
dollars using the exchange rate on January 1, 2010: 12.8096 pesos/dollar62 and then to 2024 dollars
using the consumer price index for all urban consumers: 1 2010 dollar to 1.45 2024 dollars.

B.8 Calculating Biased Welfare

I discuss here how I calculate the welfare of individuals forming naive expectations of the climate
system. Before doing so, I highlight that for the fully-informed individuals, their remaining lifetime
welfare is given by the sum of their alternative specific value function associated with the state and
particular period 𝑡 choice and the logit draw for that decision. This is because their expectations
mirror the true climate system. On the other hand, the naive individuals make their choices based
off a biased Bellman, and as such, their welfare will be lower than that given by this Bellman.

I highlight that in the terminal period a naive and fully-informed individual share the same true
alternative-specific value function. This is because after this period there are no further choices to

61I get this figure from: OECD Data, accessed 7/9/2024.
62FRED Data, accessed 7/9/2024.
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be made. I use this fact to recursively calculate the welfare for naive individuals. Mathematically, at
time 𝑇 , a naive individual’s true welfare (net of their current period stochastic shock) is given by:

𝑉
𝑛𝑡

𝑇 (ℓ, ℓ′, 𝜔) = 𝑉𝑇 (ℓ, ℓ′, 𝜔),

where 𝑉𝑇 (ℓ, ℓ′, 𝜔) is as given by Equation 9. For time 𝑡 < 𝑇 , the naive individuals welfare (net of
the stochastic logit draw) is given by:

𝑉
𝑛𝑡

𝑡 (ℓ, ℓ′, 𝜔) = 𝑢(ℓ, ℓ′, 𝜔) + 𝛿3E
[
𝑉𝑛𝑡
𝑡+1(ℓ

′, 𝜔′) |𝜔
]

= 𝑢(ℓ, ℓ′, 𝜔) + 𝛿3
∬ {

𝑉
𝑛𝑡

𝑡+1(ℓ′, 𝑗 , 𝜔′) + E
[
𝜀 𝑗 |𝑑𝑛 = 𝑗

]}
𝑑𝐺𝑛 ( 𝑗 |ℓ′, 𝜔′)𝑑𝐹 (𝜔′|𝜔)

= 𝑢(ℓ, ℓ′, 𝜔) + 𝛿3
∬ {

𝑉
𝑛𝑡

𝑡+1(ℓ′, 𝑗 , 𝜔′) + 𝛾

+ log

( 27∑︁
𝑘=1

exp
(
𝑉
𝑛

𝑡+1(ℓ′, 𝑘, 𝜔′) −𝑉
𝑛

𝑡+1(ℓ′, 𝑗 , 𝜔′)
)) }

𝑑𝐺𝑛 ( 𝑗 |ℓ′, 𝜔′)𝑑𝐹 (𝜔′|𝜔),

where 𝑉𝑛 is the biased alternative specific value function for naive individuals and 𝑑𝑛 is the decision
made based on this biased view of the world. The expectation operator on the first line of this
equation is taken over the joint distribution of the state transitions (𝐹), the stochastic shocks, and the
naive choice probabilities (𝐺𝑛). The second line uses the definition of the alternative-specific value
function to rewrite the true value of a naive individual from living in location ℓ′ with state 𝜔′ as a
weighted sum of the true expected value of living in location ℓ′ with state 𝜔′ and choosing location
𝑗 , where the weight is given by the naive choice probability.63 The third line borrows from Kennan
(2008) to rewrite the expected value of the logit draw, conditional on the choice made based on the
biased alternative-specific value function (𝑉𝑛), in the form given above.

63Another way to see this is through an application of the law of iterated expectations taken across the joint distribution
of the naive choice probabilities and the state transitions.
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Table B4: Average First Stage Historical Climate Transitions

Temperature Precipitation
Dry

Intercept 5.854507∗∗∗ 0.297038∗∗∗
(1.4242) (0.0321)

Time Trend 0.002950∗∗ -0.000977∗∗∗
(0.0013) (0.0002)

Lag 0.687234∗∗∗ 0.067172
(0.0760) (0.0975)

Temperate

Intercept 3.361396∗∗∗ 0.641326∗∗∗
(0.9733) (0.0800)

Time Trend 0.003898∗∗ -0.000001
(0.0016) (0.0005)

Lag 0.801928∗∗∗ 0.154281
(0.0574) (0.1027)

Warm

Intercept 8.793137∗∗∗ 0.672060∗∗∗
(1.8607) (0.0893)

Time Trend 0.001561 0.000517
(0.0012) (0.0006)

Lag 0.624611∗∗∗ 0.245836∗∗
(0.0794) (0.0977)

Notes: Temperature is the average of the daily
temperature distribution in the relevant climate.
Precipitation is the average the total level of
agricultural-season precipitation across the locations
composing the relevant climate. The time trend is
measured in years from 1950. The data used in
estimation come from Livneh et al. (2015) for years
1950-1979 and Thornton et al. (2022) for years
1980-2020.
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Table B5: Comparisons for Identification

1{Migrate} Length of Stay

Previous Migrant 0.05262*** -0.64***
(0.00086) (0.23)

1{Origin is Birth Location} -0.04401*** -0.53**
(0.00092) (0.22)

Predicted Wage -0.000185*** 0.163***
(0.000049) (0.017)

1{Origin is Urban} -0.00083 1.50***
(0.00070) (0.22)

Age -0.000929*** -0.108***
(0.000036) (0.017)

Degree days above 26°C 0.00418*** 0.48**
(0.00066) (0.23)

Degree days above 26°C2 -0.00068*** -0.043
(0.00013) (0.048)

Degree Days below 14°C 0.0016*** 0.58***
(0.0004) (0.13)

Degree Days below 14°C2 -0.000271*** -0.024
(0.000046) (0.015)

Num.Obs. 260472 6012
R2 0.043 0.069

Notes: Column 1 represents a linear probability model for individual
migration decisions, using the MMP data. Column 2 represents the OLS
estimates for the number of years of a given move, recorded in the MMP data,
as a function of the characteristics of the first year of that move. *p < 0.1;
**p < 0.05; ***p < 0.01

Table B6: Expected Moving Costs

Expected Cost

Average Minimum Maximum

Overall -50,194 -247,082 152,622

Towards Birth Location 29,167 -32,009 152,622

Away From Birth Location -96,618 -247,082 -33,453

Number of Moves 4,262
Notes: Costs are measured in 2024 dollars. The expected cost is defined in
Appendix B.4. Negative costs represent net positive expected contemporaneous
utility.
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C Robustness & Additional Results

C.1 Additional Model Fit Statistics

Table C1 shows the data and model-predicted moments discussed in the main text, Figures C1 and
C2 replicate the relevant figures in the main text, when simulating the entire life-history of each
individual in the estimation data.

Table C1: Model Fit - Full Lifecycle

Migration Rate

Model Data

Overall 4.1% 4.7%

Children
Yes 3.9% 3.4%
No 4.1% 7.2%

Agricultural Worker
Yes 3.5% 3.5%
No 4.3% 5.3%

Years of Education
0-5 3.8% 4.2%
6-11 4.0% 3.8%
12+ 4.6% 7.5%

Note: For each category, I calculate the average
migration predicted by 100 model simulations of
the life trajectories of the individual-year
observations used in estimation. The data
migration rates are calculated as the average
migration rate for each category.

C.2 Additional Results

Table C4 presents the estimated preference and moving cost parameters when allowing for a different
moving cost for agricultural workers. Figure C3 present the value of migration for 17–19-year-olds,
broken apart by climate, urban/rural location of birth, education level, and sector of employment.
Figure C4 presents the climate damages for the same group, broken apart by the same characteristics.
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Figure C1: Model-Predicted Migration Rates by Education
Notes: This figure plots the average migration rates in the data against those predicted by the model, broken apart by
education levels. It represents the model-simulations for the entire lifecycle for all individuals used in estimation. Low,
mid, and high-education refers to less than 6 years, 6–11 years, and 12 or more years of education, respectively

Figure C2: Model-Predicted Migration Rates by Sector of Employment
Notes: This figure plots the average migration rates in the data against those predicted by the model, broken apart by
sector of employment. It represents the model-simulations for the entire lifecycle for all individuals used in estimation.
Low, mid, and high-education refers to less than 6 years, 6–11 years, and 12 or more years of education, respectively
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Table C2: Static Logit Parameters: Forward Looking Evidence

Flow Utility Moving Costs

Income 0.063 Moving Intercept 2.911
(0.006) (0.095)

Degree Days above 26°C 0.023 Distance 0.136
(0.042) (0.014)

Degree Days above 26°C2 -0.070 Children 0.128
(0.014) (0.044)

Degree Days below 14°C 0.148 Age 0.209
(0.014) (0.009)

Degree Days below 14°C2 -0.024
(0.002)

Average Temperature Next Decade 0.019
(0.006)

Urban Location -0.349
(0.027)

Birth Location 2.450
(0.022)

Log-Likelihood: -25255.83
Note: Income is measured in annual hourly 2010 pesos, degree days are divided by 100,
distance is measured in log kilometers. Average temperature over the next decade refers to the
mean of the daily temperature distribution at the level-one Köppen climate level. Future
temperatures are drawn from the historical data through 2020 and the business-as-usual
simulated weather data for 2020–2030. Standard errors are computed with the inverse Hessian.
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Table C3: Supplemental Values of Migration

Value of Migration

Only Only General
Wages Amenities Equilibrium

Average 5,773 21,271 19,205

Climate
Dry 4,947 16,587 13,660
Temperate 6,306 5,909 5,363
Warm 5,336 73,963 68,544

Agricultural Worker
Yes 5,187 34,604 32,652
No 5,851 19,504 17,423

Years of Education
0–5 5,501 30,530 29,527
6–11 5,682 24,649 23,136
12+ 5,821 19,555 17,232

Note: These are the average results of 100 simulations of the model.
Values are for 17-19 year olds forming fully-informed climate
expectations, in 2020, measured in 2024 dollars. The value of migration
is defined as the difference between average lifetime welfare for an
individual who can migrate and one who cannot. All values are for a
business-as-usual climate scenario: the SSP2-4.5 climate projections.
General equilibrium refers to the business-as-usual scenario with a
congestion cost in the income equation, iterated to convergence. The
amenity impact is from a counterfactual where weather does not impact
wages. The wage impact is from a counterfactual where weather does
not impact amenities.
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Figure C3: This figure plots the average value of migration for 17–19-year-olds, from 2020 through
2038. (a) breaks this value apart by climate of birth, (b) by urban/rural status of the location of birth,
(c) by education level, and (d) by sector of employment
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Figure C4: This figure plots the average level of climate damages for 17–19-year-olds, from 2020
through 2038. (a) breaks this value apart by climate of birth, (b) by urban/rural status of the location
of birth, (c) by education level, and (d) by sector of employment
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Table C4: Utility Parameters, Agricultural Movers

Flow Utility Moving Costs

Income 0.006 Moving Intercept 2.781
(0.0007) (0.074)

Degree Days above 26°C 0.023 Distance 0.109
(0.005) (0.011)

Degree Days above 26°C2 -0.010 Children 0.091
(0.002) (0.030)

Degree Days below 14°C 0.021 Age 0.172
(0.002) (0.006)

Degree Days below 14°C -0.004 Agricultural Worker 0.078
(0.0003) (0.027)

Urban Location -0.041
(0.003)

Birth Location 0.179
(0.002)

Mass of Movers 0.627
(0.013)

Log-Likelihood: -24866.35
Note: Income is measured in annual hourly 2010 pesos. Degree days are divided by
100, and measured in the destination location. Distance is measured in log kilometers.
The likelihood contains 90,578 individual-year observations from 11,194 individuals.
Standard errors in parentheses.
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Figure C5: Migration rates across time and beliefs
Notes: This figure plots model-predicted migration rates, for 17–19-year-olds by time. The solid curve represents the
migration rate for fully-informed individuals; the dashed curve for climate-naive individuals, and the light solid curve
the average migration rate in the limited climate change scenario. The results are averaged over 100 simulations.

Figure C6: Migration rates from static logit
Notes: This figure plots the static logit model-predicted migration rates, for 17–19-year-olds by time, under a business-
as-usual warming scenario. The results are averaged over 100 simulations.
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Figure C7: Value of information to climate-naive
Notes: This figure plots the value of becoming fully-informed, to the climate-naive, over time and space. The solid
curve represents the value to those living in dry location, the dashed curve in warm locations, and the dotted curve in
temperate locations. Results are averaged over 100 simulations.

Figure C8: Value of migration subsidy, across time and policy-structure
Notes: This figure plots the value, to 17–19-year-old movers, of $1,100 migration subsidies, broken apart by the dynamic
structure of the policy. The solid curve represents the value of a dynamic policy which is used at the first time an
individual decides to move. The dotted curve represents the value of a static policy which is only available in the given
year. The dashed line represents the level of the subsidy. Results are averaged over 100 simulations.
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D Extensions

D.1 Within-Location Across-Municipality Moves

Table D1: Utility Parameters: Within Location Moves

Flow Utility Moving Costs

Income 0.006 Moving Intercept 3.185
(0.0006) (0.066)

Degree Days above 26°C 0.059 Within Location 4.486
(0.005) (0.025)

Degree Days above 26°C2 -0.023 Distance 0.166
(0.002) (0.010)

Degree Days below 14°C 0.027 Children 0.375
(0.002) (0.283)

Degree Days below 14°C2 -0.004 Age 0.226
(0.0003) (0.050)

Urban Location -0.043
(0.003)

Birth Location 0.214
(0.002)

Mass of Movers 0.641
(0.013)

Mass of Believers 0.766
(0.176)

Log-Likelihood: -30858.60
Note: Income is measured in annual hourly 2010 pesos. Degree days are divided
by 100 and measured in the destination location. Distance is measured in log
kilometers. The likelihood contains 90,578 individual-year observations from
11,194 individuals. Standard errors in parentheses.

Table D1 presents the estimated preference and moving cost parameters when additionally
modeling the decision to move across municipalities but within the same location - that is, individuals
choose over 28 options: 26 across location moves, 1 within location move, and the option to remain
in the same municipality-location. In particular, I modify the baseline moving costs as follows:

𝑐(ℓ, ℓ′, 𝜔) = 𝛾̃1𝜔 + 𝛾̃21{ℓ = ℓ′ ∧ move} + 𝛾̃3𝑑 (ℓ, ℓ′) + 𝛾̃41{𝑘𝜔 ≥ 1} + 𝛾̃5age𝜔,

where, now, 𝛾̃2 represents the within location moving cost. 𝛾̃3 is identified only from moves across
locations, and 𝛾̃4 and 𝛾̃5 are identified from both within and across location moves. The estimated
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moving costs are higher than in the baseline specification, but the preference parameters are quite
similar. The within location moving cost is quite high. This is because most moves are long-distance
in the estimation data.

E Simulations

E.1 Census Data

The counterfactual simulations use data on the entire male population living in Mexico, as of 2020.
I discuss here how I use publicly available Census data to create an individual-level dataset to
simulate population movements.

I use the 2020 full-count Census (El Censo de Población y Vivienda 2020) to recover municipality-
level distributions of education, age, and agricultural employment. More specifically, I use the
caracterı́sticas económicas module to recover education levels in each municipality. These data
contain information on the count of individuals, by sex, in each of the following education
categories: no schooling, complete primary education, incomplete secondary education, complete
secondary education, complete technical education, completed upper secondary, and completed
higher education. I define low education as those with no schooling (less than 6 years), medium
education as those with complete primary or incomplete secondary education (6–11 years), and
high education as those with complete secondary or higher education (12 or more years). When
forming the municipality-level education distribution, I subset to only include males.

The above survey is based on the basic questionnaire, which is administered to all individuals
living in Mexico. The basic survey does not contain information on the sector of employment. For
this reason, I additionally use the extended questionnaire (Tabulados del Cuestionario Apliado) to
recover the proportion of each municipality’s population that works in agriculture, livestock, forestry,
fishing, and hunting. I use this proportion to define agricultural employment. A drawback of this
extended questionnaire is that it only covers the population living in private households; it misses all
individuals living in collective housing, the homeless, and those in the Foreign Service. Moreover,
there are three municipalities in Mexico that are not covered by the extended questionnaire. I
assume that their agricultural employment rates are the same as the weighted average of the other
municipalities in their assigned location.

I use the Caracterı́sticas de la Población module to recover raw population counts, broken apart
by sex and age, at the municipality level. I subset these data to only males who are less than 62
years old (the terminal age group in the model). I keep all children younger than 17 in the data, as I
will bring these individuals into the model as they come of age.

The above three data sources are merged to create a set of municipality-level state-variable
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distributions and population-by-age counts. I use the Köppen maps, discussed in Appendix A.3,
and the metropolitan-zones, discussed in Appendix A.4 to aggregate this information to the 27
model-locations. In particular, I sum population-ages across each municipality in a given location,
and use the total population, at the municipality level, to weight the education and agricultural
employment distributions.

This framework allows me to create an individual-level dataset. To do so, for each location and
age group, I draw the number of individuals as given by that location-age grouping. I assign their
agricultural employment status from a Bernoulli draw with a location-specific success probability. I
then assign their education level from a multinomial draw with a location-specific probability vector.
Since the census data does not contain information on individual birth municipalities, I assume that
everyone in the data currently resides in their birth location. Finally, I assign children to parents
using the population counts below 17 and fertility rates (number of children by age) from the MMP
data. I hold the resulting dataset fixed for the counterfactual simulations, across both counterfactual
scenarios and within scenarios and across iterations.

Table 1, in the main text, presents statistics on the relevant variables across the 2020 census and
the MMP data.

E.2 Simulation Framework

I use the individual-level dataset described above to simulate the migration choices of the entire male
population through 2080 under a variety of counterfactual scenarios. Within each counterfactual
presented, I simulate behavior for 100 iterations. Within each iteration, I draw new shocks from:

• Moving types, from a Bernoulli distribution with probability given its MLE estimate

• Belief types, from a Bernoulli distribution with probability given its MLE estimate

• Weather shocks across the three primary Köppen climates for the six weather states, from a
mean-zero Gaussian with covariance given by that from the historical weather data

• Preference shocks for each individual-year, from a Type I extreme value distribution

• Fertility shocks for each individual-year that is not a parent, from a standard Gaussian

These shocks, along with the individual-level data described above, completely characterize the
state of each simulated person. I use the MLE parameter estimates to solve the relevant Bellman
equations for each individual to simulate forward their life choices.
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E.3 Counterfactual Scenarios

As discussed in the paper, I model a business-as-usual climate scenario as one following the SSP2-4.5
scenario. This scenario is characterized by a moderate degree of warming under current climate
policies. On the other hand, I model a scenario of limited climate change as a climate centered
around recent historical averages, those from 1950 to 1980. Table E1 presents the estimates of 𝜌 for
the business-as-usual scenario, averaged across the entire period.64

E.4 General Equilibrium

This paper models migration in a partial equilibrium setting. One potential concern is that general
equilibrium forces will respond to shifts in populations through space through a suppression of
the wage level in desirable locations. Some percent of the population modeled as migrating will
sufficiently marginal in their decision such that this reduction would be sufficient to reverse their
decision; either causing them to move to a different location or not to move at all. This would imply
that both my estimated value of migration, my migration rate elasticity would be biased upwards,
and the estimated percent reduction in climate damages because of migration, would be biased
upwards. I find that these forces are relevant, but that the primary conclusions of the paper remain
outstanding after accounting for the described congestion impacts.

Before describing the relevant algorithm, I first discuss how such impacts should enter into the
model. In particular, define 𝜉 as the elasticity of wages 𝑤 with respect to labor supply 𝑄. Then if
𝑄ℓ rises by 𝑥%, 𝑤ℓ will increase by 𝑥𝜉%. I calibrate 𝜉 = −0.3 (Borjas, 2003).

I iterate on the following algorithm until population shares converge:

1. Simulate migration decisions with the estimated model and wage equation through 2038

2. Calculate the difference in population levels from 2023 to 2038 throughout Mexico

3. Assume that wages respond to this change in population65

4. Resimulate behavior under the new wage regime

For example, in the first step of this process I use the estimated model and the setup described in
Section 6 to simulate the behavior of each male in Mexico, beginning in 2020 and ending in 2038.
This allows me to calculate the percent change in populations between 2023 and 2038 for each of the

64Each year of the simulation has its own set of coefficients corresponding to the previous 30 years of weather
outcomes. I present the coefficients when estimating the transition across the entire simulation period. These are not the
coefficients I use in the counterfactuals.

65In particular, I assume that wages respond linearly to this change in populations up to 2038, and then remain at
2038 levels.
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locations in the choice set.66 I use these changes in populations to calculate updated wages, where
the new wage is calculated according to the change in populations and the calibrated elasticity. I
then simulate behavior according to this update in wages, and repeat steps 2-4 until the maximum
difference in population differences, across locations, between iterations, is sufficiently small.

More formally, define 𝑚 (𝑘) (𝑡) ∈ R27×27 as the migration matrix at year 𝑡 in iteration 𝑘 . Then,
𝑚 (𝑘) (𝑡)𝑖 𝑗 =

∫
1{ℓ = 𝑖 ∩ ℓ′ = 𝑗}𝑑𝑃(𝑘), where 𝑃(𝑘) is the distribution of individuals at iteration

𝑘 . Let 𝑛(𝑘) (𝑡) ∈ R27 be the population vector at year 𝑡 in iteration 𝑘 . Then, 𝑛(𝑘)
𝑖

(𝑡) = ∑
𝑗 𝑚

(𝑘)
𝑖 𝑗

(𝑡).
Finally, define 𝑎 (𝑘) ∈ R27 as the percentage change in populations from 2023 to 2038 in iteration 𝑘 .
Then, 𝑎 (𝑘)

𝑖
=

𝑛
(𝑘 )
𝑖

(2038)−𝑛(𝑘 )
𝑖

(2023)
𝑛
(𝑘 )
𝑖

(2023)
. This algorithm converges when 𝑑 (𝑎 (𝑘) , 𝑎 (𝑘−1)) < 𝜀, where 𝑛(𝑘)

comes from simulated population movements, as described in Appendix E, with wages updated
such that 𝑤 (𝑘) = 𝑤 (𝑘−1) ∗ (1 + 𝜉𝑎(𝑘 − 1)). A sufficient condition for uniqueness of the resulting
equilibrium is that 𝜕𝑎

(𝑘+1)
𝑝

𝜕𝑎
(𝑘 )
𝑗

→ 0 ∀𝑝, 𝑗 . If all marginal movers across simulations decide to either

move to their initial destination or to not move at all, then this condition will be met. In reality, most
chosen destinations are close substitutes to other locations within the choice set. This implies that
the sufficient condition is unlikely to hold in practice.

66Beginning in 2023 only aids in speeding up convergence of this algorithm. Similar results are drawn when using
2020 as the base year.
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Table E1: Average First Stage SSP2–4.5 Climate Transitions

Temperature Precipitation
Dry

Intercept 16.264189∗∗∗ 0.291821∗∗∗
(3.6974) (0.0588)

Time Trend 0.028378∗∗∗ -0.000175
(0.0069) (0.0007)

Lag 0.199050 0.142953
(0.1824) (0.1732)

Temperate

Intercept 16.632479∗∗∗ 0.989206∗∗∗
(2.9162) (0.1339)

Time Trend 0.031055∗∗∗ -0.002027
(0.0063) (0.0013)

Lag 0.112766 -0.159349
(0.1559) (0.1550)

Warm

Intercept 18.750155∗∗∗ 0.996126∗∗∗
(2.5778) (0.1177)

Time Trend 0.018471∗∗∗ -0.001678∗∗∗
(0.0028) (0.0004)

Lag 0.238298∗∗ 0.087531
(0.1049) (0.1069)

Notes: Temperature is the average of the daily
temperature distribution in the relevant climate.
Precipitation is the average the total level of
agricultural-season precipitation across the locations
composing the relevant climate. The time trend is
measured in years from 2020. The data used in
estimation come from Thrasher et al. (2022), are
subsetted to years 2020–2050.
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